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Abstract

India is the world’s largest groundwater user, with 90% used for agriculture. Ground-
water, however, is a common pool resource, generating a tragedy of the commons that
threatens agricultural sustainability. We develop a parsimonious model to show how a
popular policy intervention — subsidizing efficient irrigation technology — can exacer-
bate distortions away from socially optimal groundwater extraction. We test the model’s
predictions by leveraging geophysical variation in extraction externalities and a $1.35
billion program subsidizing efficient irrigation. Consistent with the model’s predictions,
the policy’s impact depends on the severity of extraction externalities: extraction falls
9.2% in low-externality areas but rises 11.0% in high-externality areas. Low-externality
farmers maintain cultivation using less groundwater, while high-externality farmers
cultivate more intensively. Finally, the program causes climate-adaptive responses in
low-externality areas — reducing extraction during normal rainfall and increasing it
during droughts — but the opposite pattern in high-externality areas, consistent with
climate maladaptation. Our findings illustrate that the same common pool conditions
that typically justify an intervention may also determine its welfare implications.
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1 Introduction

The Green Revolution transformed Indian agriculture, driving a ten-fold increase in
groundwater irrigation between the 1960s and 2010s as farmers met the increased water
requirements of expanded cropping (Mukherji, 2022). This irrigation boom underpinned
sharp gains in agricultural yields and food security, but also positioned India as the world’s
largest groundwater user, which has led a modern depletion crisis: in much of Western
India, groundwater extraction now exceeds natural recharge, driving water tables deeper
(CGWB, 2022). As water tables fall, groundwater becomes more costly to extract (Ryan,
2022, Manring, 2013), diminishing farmers’ access to a key input and compromising their
ability to bear climate shocks.

In response, policymakers have promoted micro-irrigation subsidies as a conservation
solution. In contrast with traditional irrigation methods, micro-irrigation technologies
deliver groundwater more precisely to the plant root, achieving more targeted and consistent
soil moisture. These systems can significantly reduce water requirements for the same
agricultural output (Narayanamoorthy, 2004). In developing contexts such as India, where
weak institutions may preclude more classic solutions to the tragedy of the commons — such
as Pigouvian taxation or Coasean bargaining — micro-irrigation improvements represent a
institutionally feasible, politically palatable path for intervention. Policymakers commonly
promote these technologies as providing “more crop per drop” under the expectation that, if
farmers can achieve the same — or better — output with less groundwater, total extraction
may fall. However, economic intuition reveals an opposing force: increasing the marginal
productivity of groundwater increases the incentive to extract it, and thus farmers may
extract more groundwater — the classic rebound effect identified by Jevons (1865), in which
efficiency improvements paradoxically increase total resource use.

In this paper we show how the severity of extraction externalities — the very distortion
that warrants intervention in common pool resources — plays a central role in determining
whether technology ameliorates or exacerbates groundwater extraction and its possible welfare
consequences. Three questions guide our analysis. First, does the impact of technology
improvements on groundwater extraction depend on the severity of extraction externalities?
Second, if technology improvements impact groundwater use, through what mechanisms do
farmers adjust? Third, how does technology affect farmers’ ability to cope with climate shocks
through groundwater extraction? We provide both theoretical foundations and empirical
evidence answering not only whether technology improvements may fail to conserve common
pool resources but also why. The results reveal a fundamental tension: the areas where

externalities are most severe are precisely where technology backfires, leading to increased



groundwater extraction. Intuitively, efficient irrigation makes groundwater more productive
today and more valuable tomorrow, but farmers in high-externality settings respond primarily
to the former while discounting the latter.

To provide intuition and guide our subsequent empirical analysis, we develop a two-period
model of groundwater extraction under common pool externalities and rainfall uncertainty:.
Groundwater depletion reflects a tragedy of the commons: farmers cannot exclude others from
extraction, yet each farmer’s pumping depletes the shared stock (Hardin, 1968), increasing
future extraction costs for all (Gisser and Sanchez, 1980, Provencher and Burt, 1993, Negri,
1989). Because individual farmers maximize private rather than social welfare, extraction
exceeds the social optimum. In our model, farmers share an aquifer and must decide how
much groundwater to extract each period, given uncertainty about future rainfall. Crucially,
farmers internalize only a fraction of their extraction’s impact on future water availability,
captured by parameter 6 € [0, 1] where higher values indicate more severe externalities. This
manifests in the evolution of the water table. Extraction today lowers the water table — and,
therefore, increases the cost of extraction — tomorrow. Since 6 reflects the degree to which
the aquifer is shared with other farmers, individual farmers only internalize 1 — 6 of how
their extraction impacts the water table tomorrow. As 6 — 0, the externality shrinks and the
individual farmer’s solution approaches the social planner’s solution. However, as 6 increases
and the aquifer becomes more shared, each farmer internalizes less of how their actions affect
the water table, distorting their behavior away from the social optimum.

This distortion plays a key role in each of the model’s main predictions about how
irrigation efficiency improvements interact with externalities. We capture irrigation efficiency
as a parameter \ that scales how efficiently a marginal unit of water turns into agricultural
output, and we therefore express improvements in irrigation efficiency as an increase in .
From this setup, the model generates four main predictions, as visualized in Figure 1. First,
the presence of externalities, 6 > 0, generates a wedge between individual and socially optimal
extraction, visualized as Ag, consistent with overextraction in common-pool settings. Second,
technology may increase or decrease total extraction, even for a social planner, depending
on other model parameters. In Figure 1, we choose to depict this as an increase in socially
optimal extraction, Aj, to emphasize that increased extraction could be a socially optimal
response. Third, and most critically, there exists an externality threshold #* above which
efficient irrigation increases the wedge between individual and socially optimal extraction,
visualized as the increase Ay, — Ag > 0, the additional technological “backfire” attributable to
externalities. This additional technological “backfire” occurs because efficiency improvements
increase the shadow value of groundwater — making it more valuable both today and in the

future — but individual farmers respond to these higher returns without fully internalizing the



social cost of depletion. Since farmers internalize only 1 — 6 of how their extraction impacts
future groundwater availability, they increase extraction more than a social planner would in
response to the same technology improvement. Fourth, comparative statics reveal that this
wedge widens further as climate becomes more volatile, indicating that efficient irrigation

may be climate maladaptive when externalities are severe.

Figure 1: Theoretical Technological Backfire

Xt —a— Social Planner
—e— Decentralized X7ee

X

EC

Extraction
=
[=]

)t[] A 1
Technology Level

Note: This figure depicts how technology increased from A to A\; may impact individual
(decentralized) and socially optimal groundwater extraction. Ay shows the over-extraction
at baseline due to the externality. A; shows the possible optimal increase in extraction due
to more efficient irrigation, as in Jevons (1865). Ay shows the new gap in extraction, which
has increased from Aj. The increase in the wedge Ay — Ay > 0 represents the additional
technological backfire due to externalities.

To test these predictions, we leverage policy-induced variation in irrigation efficiency
improvements from India’s Groundwater Management Scheme (In Hindi, Atal Bhujal Yojana;
henceforth ABY). With a total budget of $1.35 billion distributed across 227 subdistricts in
seven states of Western India, ABY channels funds to local governments to augment existing
schemes that subsidize groundwater conservation technologies. The program primarily
subsidizes micro-irrigation technologies—systems that increase the marginal productivity of
groundwater without altering the physical extraction process itself, analogous to increases in
A in our model. The ABY treatment period began in March 2020 and will continue through
March 2026.



For variation in extraction externalities, we exploit geophysical characteristics of India’s
varied aquifer systems. Aquifers are underground formations of porous rock that store
groundwater in interstitial spaces, much like a sponge. When a farmer extracts groundwater,
pumping creates a cone of depression — the water table declines not only beneath the well but
across a surrounding area. The spatial extent of this cone depends on aquifer transmissivity —
a hydrological measure of how easily water flows laterally through the aquifer, determined
by both rock permeability and aquifer thickness. Higher transmissivity creates wider cones,
meaning more farmers are hydraulically connected and share the same effective groundwater
source. This determines the severity of externalities: when more farmers share the same
effective source of groundwater, each individual farmer’s extraction represents a smaller
fraction of total depletion, and thus each internalizes less of how their pumping affects future
water availability. We construct an externality score based on transmissivity weighted by
farming household density, serving as an empirical analogue to 6 in our model, where higher
values indicate more severe externalities. Intuitively, the externality score captures that the
externality is determined not just by the spatial reach of depletion but also how many farmers
are impacted by it.

We combine these two sources of variation using data from India’s Central Groundwater
Board (CGWB), which monitors groundwater depth at observation wells across nearly
6,000 subdistricts, satellite-based land use classifications from the Indian Space Research
Organization (ISRO), and hydrogeological surveys of aquifer characteristics from India’s
Water Resources Information System (WRIS), harmonized spatially via the Population Census
2011 map of subdistrict boundaries.

Our main empirical strategy employs a triple difference-in-differences design: we test
whether the impact of technology adoption through ABY depends on the severity of extraction
externalities. This approach exploits a fundamental feature of our model: as § — 0, the
individual farmer’s extraction decision converges to the social optimum. We operationalize
this by splitting subdistricts at the median of our externality score, defining low-externality
subdistricts where 6 < §™¢%an and high-externality subdistricts as those where 6 > gmedian,
Intuitively, in low-externality subdistricts, individuals internalize a greater share of how
their extraction impacts shared groundwater availability, and therefore their incentives may
more closely reflect socially optimal behavior. The differential response to ABY between
high- and low-externality subdistricts, therefore, identifies whether technology widens the
extraction wedge when externalities are severe. If, for example, technology causes farmers in
high-externality subdistricts to extract more relative to those in low-externality subdistricts,
this would be consistent with our key theoretical prediction: irrigation efficiency improvements

exacerbate distortions away from socially optimal behavior when externalities are severe.



Our empirical findings are consistent with these theoretical predictions. Testing how
irrigation efficiency improvement through ABY impacts total groundwater extraction, we
find that, in aggregate, ABY appears to have had no effect on extraction — the difference-
in-difference estimate is small and not statistically distinguishable from zero. However, this
masks significant heterogeneity. For low externality subdistricts — where § < gmedian — ABY
reduces total groundwater extraction by 9.2% (p < 0.10). However, in high externality
subdistricts (8 > §median)  total groundwater extraction increases by 11.0% (p < 0.01), a
20.2 percentage point swing representing a rebound effect of nearly 220%. These results
align with two main theoretical predictions. First, that extraction falls in low-externality
subdistricts but rises in high-externality subdistricts is consistent with the prediction that
technology can — but may not necessarily — reduce groundwater extraction. Second, this result
illustrates that technology widens the wedge between private and socially optimal extraction
when externalities are severe enough; the 20.2 percentage point differential demonstrates
that technology amplifies distortions away from the social optimum precisely where they are
already more severe.

Next, we explore the mechanisms driving these extraction patterns. While data limitations
preclude examining crop switching and yield responses at the subdistrict level, we can test
whether farmers adjust their land use along two margins: extensive (sowing more land area)
or intensive (cropping the same land more frequently within the same year). We find no
evidence of extensive margin adjustment—sown area remains unchanged, consistent with
sticky land markets and binding land constraints in rural India (Morris and Pandey, 2009).
However, we observe significant intensive margin responses in high-externality subdistricts.
These areas show a 2.4 percentage point increase in land under multi-cropping (p < 0.10),
representing a 20% rise over the pre-treatment mean. This pattern suggests that when
technology increases the marginal productivity of groundwater, farmers in high-externality
areas respond by intensifying cultivation on existing plots rather than expanding cultivated
area. Notably, low-externality subdistricts show no such intensification, indicating that
conservation in these areas occurs through efficiency gains rather than reduced cropping
intensity.

Finally, we examine outcomes on climate resilience. A core purpose of groundwater is
to substitute for rainfall when it is insufficient for crop growth (Taraz, 2017). This implies
that farmers who wish to smooth agricultural output across climate shocks will extract more
groundwater when rainfall is low. In our data, farmers begin extracting significantly more
groundwater when annual rainfall drops below approximately 600mm — at this threshold,
extraction increases by about 10% relative to median rainfall years (1000mm). We use

this empirically-derived threshold to examine how technology adoption impacts farmers’



groundwater extraction when faced with a low rainfall shock. To the policymaker interested
in climate adaptation, technology adoption would allow farmers to use less groundwater during
periods of normal rainfall, thus allowing them to use more groundwater to substitute for
rainfall when it is low. We find, again, that the impact of ABY on extraction patterns across
rainfall shocks depends on the severity of externalities. In low-externality subdistricts, where
ABY reduces overall extraction, the program generates the intended climate adaptation: ABY
causes farmers to extract less during periods of normal rainfall and extract more during periods
of low rainfall, preserving the groundwater buffer for when it is most needed. Strikingly,
high-externality subdistricts exhibit the opposite treatment effect: ABY causes farmers to
extract more when rainfall is normal and less when it is low. This pattern is consistent
with our earlier finding that high-externality farmers respond to efficiency improvements by
intensifying cultivation. By extracting more groundwater during normal rainfall years to
support increased cultivation intensity, these farmers deplete the water table more severely,
compromising their ability to extract during droughts when the buffer stock is most valuable.
This result implies that when externalities are severe, irrigation efficiency improvements can
be climate maladaptive — the intervention intended to enhance farmers’ resilience to climate
volatility instead increases their exposure.

Our work contributes to three strands of literature. First, we build on the literature
on how technology upgrading impacts natural resource management. A growing body of
research documents that irrigation efficiency improvements often fail to lead to groundwater
conservation. Studies from developed countries find that subsidized micro-irrigation tech-
nologies often do not reduce — and sometimes increase — groundwater extraction (Pfeiffer
and Lin, 2014, Ward and Pulido-Velazquez, 2008, Berbel et al., 2015), while Grafton et al.
(2018) synthesize evidence of this “irrigation efficiency paradox” across multiple settings. In
developing countries, similar patterns emerge: farmers adopt water-efficient technologies
but expand irrigated area or switch to water-intensive crops, offsetting conservation gains
(Fishman, 2018, Birkenholtz, 2017). These studies focus on documenting how efficiency
improvements backfire through various farmer responses. By contrast, we focus on why: the
fundamental conditions that mediate how individuals respond to technology. The severity
of extraction externalities varies across aquifers based on hydrogeological characteristics
(Edwards, 2016, Brozovié¢, Sunding, and Zilberman, 2010), with recent work showing that ex-
traction decisions can be strategic complements or substitutes depending on these conditions
(Koch and Nax, 2022). Furthermore, where recent work has largely explored farmers ability
to pump groundwater (Ryan, 2022, Sekhri, 2014, Blakeslee, Fishman, and Srinivasan, 2020),
we study whether and how it can be conserved. We show both theoretically and empirically

that whether technology improvements lead to groundwater conservation depends principally



on the severity of extraction externalities — the distortions that justify intervention may also
undermine its effectiveness.

Second, we advance a growing literature on natural resource extraction and climate
adaptation. Groundwater serves as a critical buffer stock that allows farmers to substitute for
rainfall when it is insufficient for crop growth, smoothing agricultural production across climate
shocks (Fishman, 2018, Taraz, 2017, Blakeslee, Fishman, and Srinivasan, 2020). Evidence on
whether efficiency-enhancing technologies help farmers cope with climate variability remains
mixed across different contexts (Kurukulasuriya and Mendelsohn, 2008, Di Falco, Veronesi,
and Yesuf, 2011, Lobell et al., 2014, Perry, Yu, and Tack, 2020, Taylor, 2023). We identify
the severity of extraction externalities as the key factor determining these divergent outcomes.
As climate variability intensifies globally (Burke, Hsiang, and Miguel, 2015, Schlenker and
Roberts, 2009) and aquifers transition from abundance to scarcity (Famiglietti, 2014, Jasechko
and Perrone, 2021), our findings reveal that the effectiveness of technology improvements
in building agricultural resilience depends critically on addressing the underlying extraction
externalities.

Third, we contribute to the robust literature on managing common pool resources and
designing policy instruments to alleviate the tragedy of the commons (Gordon, 1954, Ostrom,
1990). Theoretical solutions include Pigouvian taxes (Pigou, 1920), cap-and-trade systems
(Montgomery, 1972), property rights that enable Coasean bargaining (Coase, 1960, Demsetz,
1967), and community-based management (Ostrom, 1990, Wade, 1988). However, these
approaches may be infeasible in developing contexts due to weak institutional capacity, political
constraints on taxation, or high transaction costs (Jack, 2013, Ostrom, 2009, Edwards, Ayres,
and Libecap, 2018). Technology subsidies offer an attractive alternative: they are politically
palatable, require neither coordination among users nor monitoring of individual extraction,
and could theoretically reduce total extraction if farmers need less water to achieve the same
production (Fischer, 2003, Khanna, Isik, and Zilberman, 2002). Our work demonstrates
that the success of even these institutionally-light interventions depends on the conditions
that generate over-extraction. This highlights a broader principle for common pool resource
management: understanding the severity of the commons problem is prerequisite to designing
effective solutions.

The rest of the paper proceeds as follows. Section 2 provides institutional background on
groundwater use in India, Section 3 presents a conceptual framework of groundwater use and
externalities, Section 4 details our data, Section 5 contains our empirical strategy and results,

and, lastly, Section 6 concludes.



2 Institutional Background

While India has a long agricultural history, the salience of groundwater depletion is
relatively recent. In this section, we explain both institutional and physical factors that have
governed and continue to govern how individuals use groundwater. Then, we detail a recent

government scheme intended to mitigate groundwater depletion.

2.1 Groundwater and the Tragedy of the Commons
2.1.1 Groundwater Depletion in India

India’s agricultural transformation over the past half-century is inextricably linked to
groundwater exploitation. The Green Revolution, through its introduction of water-intensive
high-yield crop varieties, enabled dramatic expansion in cropping intensity and sown area.
While crops may receive water input from rainfall, the expansion in cropping necessitated
expanding access to water from other sources to meet the increased water demand for
agriculture. The majority of that demand has been met by increased access to groundwater.
Figure 2 illustrates this progression: the area irrigated by tubewells and other wells —
instruments through which farmers extract groundwater — increased ten-fold by 2014, while
the area irrigated by surface water sources remained relatively stable (Mukherji, 2022). Today,
India extracts more groundwater than the United States and China, the second and third

largest groundwater users, combined.

Figure 2: Total Area Under Irrigation (Mukherji, 2022)
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Groundwater access enabled farmers to cultivate water-intensive crops year-round, dou-
bling and tripling yields in many regions (Sekhri, 2014). Unlike surface water systems that
require extensive infrastructure and collective management, groundwater offered farmers
autonomous control over irrigation timing—critical for responding to rainfall variability and
maximizing returns to complementary inputs like fertilizers and pesticides (Pingali et al.,
2019).

However, groundwater is a common pool resource, which can give rise to depletion as a
consequence of externalities. Individual farmers extract groundwater, impacting the water
availability of others around them. In the absence of regulation, farmers will extract according
to their private interests, ignoring the economic costs imposed on others. This leads to a
tragedy of the commons in which the wedge between privately and socially optimal extraction
can lead to depletion of the shared resource.

Figure 3 illustrates the severity of the resulting crisis: approximately 50% of subdistricts
in Western India now extract groundwater beyond natural recharge rates, with many classified
as “over-exploited” or “critical” by the Central Ground Water Board (CGWB, 2022). The
problem is particularly acute in the Indo-Gangetic plain, where water tables have declined
by 3-4 cm annually since 2000 (Rodell, Velicogna, and Famiglietti, 2009). This depletion
substantially increases extraction costs — deeper wells require more energy for pumping and, if
the water table falls below the reach of the well, more expensive drilling equipment (Blakeslee,
Fishman, and Srinivasan, 2020, Ryan, 2022, Manring, 2013).

Figure 3: Spatial Distribution of Water-Stressed Districts
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The timing of the depletion crisis coincides with increasing climate variability. Extreme
rainfall events have become more frequent and spatially variable across India, with the distri-
bution of rainfall becoming increasingly uneven both within and across seasons (Fishman,
2016, Fishman, Devineni, and Raman, 2015). Increasingly variable monsoon patterns have
reduced yields in staple food crops in the regions that cultivate them most intensely (Auffham-
mer, Ramanathan, and Vincent, 2012). Groundwater is a buffer stock, allowing farmers
to substitute for insufficient rainfall and smooth agricultural production across droughts
(Fishman, Devineni, and Raman, 2015, Taraz, 2017). As aquifers deplete, this buffering

capacity weakens, threatening agricultural output (Blakeslee, Fishman, and Srinivasan, 2020).

2.1.2 Aquifers and Externalities

Groundwater extraction externalities arise from the physical characteristics of aquifers,
the subterranean structures which store groundwater. Aquifers consist of porous geological
formation — fractured rock, sandstone, or alluvial deposits — that store water in interstitial
spaces, much like a sponge. When a farmer extracts groundwater through a well, it does
not uniformly lower the water table but rather creates a “cone of depression”, illustrated in
Figure 4. This cone represents the three-dimensional region where water levels decline due to
extraction, with the deepest point at the well itself and gradually recovering to the static
water level at distance.

In hydrogeological terms, the cone’s radius depends on the aquifer’s transmissivity — the
product of hydraulic conductivity (how easily water flows through the medium) and aquifer
thickness. Extraction in higher transmissivity aquifers creates wider cones of depression
relative to lower transmissivity aquifers. These cones vary dramatically in scale: in low-
transmissivity, hard rock aquifers, the radius can be as narrow as 200-500 meters (Machiwal
et al., 2016), while in high-transmissivity alluvial aquifers, it can extend up to 5 kilometers
(Michael et al., 2017). While, over time, water equilibrates over space, flattening the curvature
of the cone, the spatial extent of the cone determines the spatial extent of water table depletion,
particularly under continuous irrigation. Following extraction, water redistributes spatially
within the aquifer, flattening the cone and spreading depletion over a broader area. Natural
recharge occurs seasonally during monsoon months (Bhanja et al., 2019), but in Western
India where extraction exceeds recharge (CGWB, 2022), water table declines persist across

seasons and years'.

IThe cone of depression mainly occurs in unconfined aquifers, in which the water surface is able to fall
freely due to gravity. However, whether or not an aquifer is confined impacts how groundwater pumping
propagates spatially and hydraulically through an aquifer system. We discuss confinement conceptually and
empirically in more depth in Appendix Section A.1.
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Figure 4: Groundwater Extraction and the Cone of Depression

well discharge

Source: Tara Gross, United States Geological Survey (USGS)

The externality arises because farmers within the cone are hydraulically connected — one
farmer’s extraction lowers water levels for others in the cone’s reach. Higher-transmissivity
aquifers generate wider cones of depression. As a consequence, given the same spatial
distribution of farmers, an individual’s extraction lowers the water table for a greater number
of surrounding farmers.

Figure 5 visualizes the cone of depression from above: a single extraction point in a
high-transmissivity aquifer affects farmers (orange) across a large radius, while the same
extraction in a low-transmissivity aquifer affects only those within a smaller radius. This leads
to two related consequences. First, since individual farmers extract groundwater according
to their own private costs rather than the costs borne by others within their radius, they
may over-extract relative to what is socially optimal. Second, because farmers within in the
same radius may extract simultaneously, and the water table declines as a result of aggregate
extraction, those on higher-transmissivity aquifers may attribute a smaller share of water table
decline to their own extraction. When the relationship between individual extraction and
total depletion is diluted, incentives to conserve groundwater diminish — reducing extraction

today has less assumed impact on future water availability.
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Figure 5: Externalities and Spatial Reach of the Cone of Depression

High Transmissivity Low Transmissivity

Note: This figure visualizes a top-down view of two cones of depression generated from a single point of
extraction (blue dot). The distribution of individuals is identical between the left and right panels. Orange
individuals represent those who are impacted by extraction and blue individuals represent those who are not.

2.2 Policy: The Groundwater Management Scheme (Atal Bhujal
Yojana)

Given the challenges of directly regulating groundwater extraction in India — infeasibility
of monitoring millions of dispersed wells, political resistance to pricing, and weak property
rights and collective management institutions — policymakers have favored technology-based
interventions. In India, there is significant room for improvement in irrigation efficiency.
While 67% of all sown land is irrigated, only 11% of sown land is irrigated under efficient
micro-irrigation technologies.

India’s Groundwater Management Scheme (in Hindi, Atal Bhujal Yojana, abbreviated as
ABY), launched in 2020, represents the country’s largest groundwater conservation program,
with a total budget of $1.35 billion over five years, spread across 227 subdistricts in seven
states? of Western India, which account for approximately 25% of the area experiencing
groundwater depletion (World Bank, 2024).

ABY is a cash infusion scheme, supplementing funding for existing programs intended
to improve the sustainability of groundwater use. Broadly, these programs impact ground-
water demand — how individual use of groundwater — and groundwater supply — how much

groundwater is available to be extracted. In practical terms, the former primarily involves

2Gujarat, Haryana, Karnataka, Madhya Pradesh, Maharashtra, Rajasthan, and Uttar Pradesh.
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subsidizing upgrades from traditional irrigation systems to micro-irrigation systems. The
latter involves structures that improve groundwater recharge from rainfall, such as injection
wells, and groundwater storage, such as ponds and percolation tanks.

In principle, therefore, ABY could subsidize a wide range of interventions impact ground-
water use and availability. However, we show in Figure 6 that, in practice, ABY primarily
subsidized micro-irrigation upgrading. The left panel shows the projected impact of demand-
side versus supply-side interventions on groundwater depletion, as estimated by village
councils in their budget proposals. Demand-side interventions—those targeting water use
efficiency—account for approximately three times the projected reduction in groundwater
extraction compared to supply-side interventions focused on recharge and storage.The right
panel reveals that these demand-side interventions consist predominantly of micro-irrigation
upgrades: “per drop more crop” technologies that increase the marginal productivity of
extracted groundwater water but do not impact its ability to be extracted. Importantly,
this emphasis on micro-irrigation reflects institutional constraints rather than deliberate
prioritization — ABY channels funding through existing agricultural schemes, limiting village

councils to interventions already available through state programs.
Figure 6: Breakdown of Interventions Funded by ABY

Relative Importance of ABY Interventions by Type Share of Demand Interventions by Type
Projected Impact as a Share of Total Water Demand
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Note: We generate both figures using data from Water Security Plans (WSPs) generated at the village council
(gram panchayat) level. The left panel reports the projected reduction in total groundwater use as a share of
baseline total groundwater use, as derived by the village councils themselves. The right panel disaggregates
the interventions affected groundwater use by type.

According to program documents (Department of Water Resources and Ganga Rejuvena-
tion, 2023), ABY targeted subdistricts where groundwater extraction exceeded 70% of natural
recharge—the water-stressed areas shown in Figure 3. However, because ABY operated by
infusing cash into existing schemes, final selection also depended on administrative capacity
— some water-stressed subdistricts were excluded due to implementation constraints, while

others below the 70% threshold were included based on institutional readiness. The final selec-
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tion of 227 subdistricts was announced on December 25, 2019, with program implementation
beginning in early 2020.

ABY’s theory of change posits that irrigation efficiency improvements will reduce ground-
water extraction while maintaining agricultural productivity. Micro-irrigation technologies
can reduce water requirement by up to 84% compared to traditional irrigation methods
while maintaining or improving yields (Narayanamoorthy, 2004). If these efficiency gains
unambiguously induce farmers to use less water to achieve the same output, total extraction
will fall — the logic underpinning the projected impacts shown in Figure 6. However, whether
farmers use efficiency gains to reduce extraction or to expand production remains an empirical
question. The next section develops a conceptual framework for understanding why farmers

may or may not conserve groundwater when irrigation efficiency improves.

3 Conceptual Framework of Groundwater Use, Technol-

ogy, and Externalities

To understand how technology upgrading may impact groundwater extraction and welfare,
we develop a two-period model of groundwater use with extraction externalities and stochastic
rainfall. The purpose of this model is two-fold. First, it provides an understanding of how the
presence of externalities mediates farmers’ extraction choices before and after a technology

upgrade. Second, it provides foundational intuition for the empirical analysis in Section 5.

3.1 Setup

Consider a continuum of farmers indexed by i € [0, 1] who share an aquifer. Each farmer
begins with an initial depth to water d;(1) = D(1), where all farmers face the same initial
depth. Farmers make extraction decisions over two periods under rainfall uncertainty.

Rainfall follows a binary distribution:

Ry with probabilit
R(t) = H p y P
R;  with probability 1 —p

where Ry > Ry, representing normal rainfall and low rainfall, respectively. Rainfall serves
two purposes. It recharges the aquifer, raising the water table and reducing the depth to
water D(2), and it contributes to soil moisture for crop production. The timing of choices is

as follows:
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1. Period 1: Given initial rainfall R(1) depth D(1), each farmer chooses groundwater

extraction x;(1), determining agricultural yield and lowering the water table.

2. Rainfall R(2) € {Ry, RL} is realized, partially recharging the aquifer and providing

soil moisture for crops.

3. Period 2: Given realized rainfall and updated depth D(2), each farmer chooses

extraction x;(2).

Though farmers choose extraction in both periods, we focus primarily on first-period
extraction, which determines water availability and, therefore, yield in period 2. In other
words, z;(1) will illustrate how farmers balance consumption intertemporally.

3.1.1 Technology and Production

Agricultural yield is a concave function of soil moisture z;(¢):
yi(t) = log(zi(t)) (1)
Where total soil moisture is the sum of extracted groundwater and rainfall:
z(t) = Azi(t) + pR(t) (2)

The technology parameter A > 0 represents irrigation efficiency — the marginal productivity
of groundwater in generating effective soil moisture and, therefore, yield. This technology
parameter is central to our analysis, as it represents the parameter impacted by upgrading
from traditional irrigation to micro-irrigation. The parameter p represents the share of
rainfall that feeds the crops, with the remaining portion (1 — p)draining into the ground and

recharging the aquifer.

3.1.2 Extraction Costs

Following the empirical literature on groundwater extraction costs (Manring, 2013, Ryan,

2022), we model extraction costs as linear in depth:

P(i(t), D(t)) = a:i(t) - D(t) (3)

This specification reflects the physical costs associated with pumping from deeper water tables:

as the water table becomes deeper, the distance over which a given quantity of groundwater
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must be lifted increases®. As a consequence, more extraction imposes higher costs.

3.1.3 Consumption and Utility

Farmers’ consumption equals agricultural output net of extraction costs:

ci(t) = wi(t) — (@i(t)) = log(Azi(t) + pR(t)) — 2:i(t) - D(1) (4)

cl=7—1
1=y

Utility is a function of consumption and CRRA: u(c) =

3.2 Externalities and Groundwater Depletion

As detailed in Section 2.1.2, shared access to groundwater generates extraction externalities:
when one farmer extracts groundwater, it impacts the water table for others around them.
We capture this in an externality parameter 6 that describes the degree to which one farmer’s
extraction depletes the water table for others who share the aquifer, illustrated in Figure 5.
From period 1 to period 2, the depth to water changes as a result of the individual farmer’s
extraction z;(t), others’ extraction X (), and rainfall, a portion (1 — p) of which recharges
the aquifer. The evolution of the depth to water as a function of an individual farmer’s

extraction is therefore:
di(t) — di(t — 1) = (1 — 0) w(t) + O X (1) — (1 — p) R(). (5)

This equation captures a relationship that is central to our model. The externality
generates an intertemporal distortion in the the individual farmer’s perception of how their
own extraction impacts their future costs. In the extreme case where 6 = 1, for example,
the farmer will optimize their extraction as if the water table evolves independently of their
own extraction. That is, for larger 6, the farmer internalizes less of how their individual
extraction impacts the shared water table, which evolves as a result of the extraction decisions

of allfarmers who share it:

3The linear setup captures costs in three cases. In India, electricity is often subsidized or free, and it may
additionally be rationed. In the case where electricity costs are positive, the cost function reflects that the
pump will have to run longer for a given quantity of groundwater to be extracted from a greater depth. In
the case where electricity is free, we assume it is rationed. When the water table is deeper, the increased
time required to pump the same quantity of groundwater leads to a lower quantity of extracted groundwater
than could have been extracted within a given time limit if the water table was higher. In the case where
electricity is neither priced nor rationed, extraction costs arise when the water table drops below the reach of
well, requiring the farmer to drill deeper at their own expense. In this case, the cost is “lumpy”. However,
we posit that the linear extraction cost in our model simply smooths over these lumpier costs, as we do not
impose limits on depth. In general, the results of this model do not require strong assumptions about the
functional form of extraction costs, only that they are monotonically rising with extraction.
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Aggregating across all farmers reveals why this creates an intertemporal distortion. The
shared water table evolves according to total extraction X (), yet when 6 > 0 fail to internalize
how their own extraction contributes to this aggregate depletion. Since extraction costs are
increasing in depth, farmers undervalue how their current extraction raises future production
costs. This wedge between individual perception and collective reality is the mechanism

through which technology can generate climate maladaptation.

D(t) = D(t—1) = /[(1 — 0)xi(t) + 0X(1)]di — (1 - p)R(t) (6)

(2

= X () — (1-)R(t) (7)

This formulation illustrates how externalities impact individual behavior. As § — 0, an
individual farmer’s own extraction impacts a greater share of the change in depth to water
and, therefore, their future cost of extraction. As # — 1, the farmer takes more of the change
in water depth between periods as given. In other words, 6 governs the degree to which
farmers internalize how their individual extraction impacts the future depth of the water
table and, since extraction costs are increasing in depth, the costs associated with agricultural

production.

3.3 Optimization and Equilibrium Conditions

Decentralized (Farmer’s) Problem: Each farmer chooses extraction {z;(1),z;(2); R}

to maximize expected utility:

py 27 Rl
subject to
di(t) = di(t = 1) = (1 = 0) as(t) + 6 X(t) — (1 = p) R(1),
¢i(1) =log(Az; (1) + pRy) — z;(1) - D(1),
¢i(2) =log(Az;(2) + pR) — x;(2) - D(2).

Social Planner’s Problem: The social planner solves an identical problem, but aggre-

gates over all farmers, choosing {z;(1), z;(2) }ico,1) to maximize:
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2 1

subject to:

D() = D(t —1) = /[(1 )t — 1)+ OX(t — 1) — (1 — p)R()] di

7

=X -1) - (1=pAR{

where:

¢i(1) = log(Az;(1) + pR(1)) — 24(1) - D(1),
¢i(2) = log(Azi(2) + pR(2)) — xi(2) - D(2).

The social planner, in aggregating overall farmers, fully internalizes the externality. In
other words, the social planner understands exactly how aggregate extraction will impact
the water table across periods. By contrast, the individual only maps (1 — 6) of their own
extraction to period 2 depth to water. This difference generates key differences in first order
conditions:

Social Planner’s Euler Equation:

A

- W (Csp(2; R))
AX5p(1) + P

u'(Csp(1))

D(1) = P | Xsp(2i 1) )

Decentralized (Farmer’s) Euler Equation:

A

. UI(ODE<2,R>>
AXpp(l) + pR

u'(Cpr(1))

D(1) = 5(1 - 6)Er | Xpp2B)|

In equilibrium, equates the net marginal benefit of extraction in period 1 (LHS) with
the discounted net marginal benefit of extraction in period 2 (RHS). The critical difference
appears in the externality factor (1 —#) the on the right-hand side of the farmer’s Euler. This
term captures the fundamental distortion: individual farmers discount the future shadow value
of extraction by the externality parameter, reducing the individual’s incentive to conserve

groundwater in period 1 for later extraction in period 2.
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3.4 Why Technology May Exacerbate the Tragedy of the Commons

Equilibrium conditions generate three propositions that illustrate how technology upgrad-
ing impacts extraction in common pool settings and, importantly, illustrate why technology
may not only increase groundwater extraction but exacerbate distortions away from social
optima.

Proposition 1 (Tragedy of the Commons): For any 6 > 0, farmers over-extract

relative to the social optimum.:
AN = X(1)PEPA) = X(1)%(A) >0

This proposition establishes the fundamental tragedy of the commons in our setting.
The wedge between individual and socially optimal extraction arises directly from the Euler
equations: farmers discount the shadow value of groundwater —the water not extracted in
period 1 — by (1 — #). In equilibrium, farmers must extract more in period 1 to equate
the left-hand and right-hand sides of their Euler equation. Since the marginal benefit of
extraction is diminishing, this higher extraction level XPF(1) exceeds the social optimum
X5P(1).

Proposition 2: In the planner’s solution, an increase in irrigation efficiency () may
lead to either an increase or a decrease in first-period extraction X (1).

Improved irrigation technology does not necessarily lead to water conservation, even under
optimal management. Higher A\ increases water’s marginal productivity in both periods,
creating opposing forces: immediate productivity gains incentivize higher period 1 extraction
while increased future productivity encourages conservation. The sign of the change in
optimal extraction depends on model parameters — risk aversion (7), discount factor (),
and production function curvature — which determine the relative strength of these forces.
If extraction increases, we observe Jevons’ Paradox. If extraction decreases, conservation
motives dominate.

Proposition 3: There exists a threshold 0* such that, for all 0 > 0%, the wedge between

decentralized and planner’s extraction increases with irrigation efficiency:

IA(N)

B >0

This proposition contains our central insight: technology can exacerbate distortions away
from socially optimal behavior when externalities are severe. The mechanism operates through
differential responses to productivity improvements. The social planner fully accounts for how

extraction today affects future costs for all farmers sharing the aquifer. Individual farmers,
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internalizing only (1 — 6) of how their extraction impacts future costs, underweight this
intertemporal cost. Above threshold 6%, this differential response causes the wedge between
socially optimal and individual extraction to widen with technological improvement.

To build intuition, consider the case in which higher irrigation efficiency causes the social
planner to reduce first period extraction.* As stated in Proposition 2, improved irrigation
efficiency increases the marginal productivity of groundwater in both periods. This also
increases the shadow value of conservation: the marginal unit of groundwater saved today
is more valuable tomorrow. When this future productivity effect dominates—for example,
under high risk aversion, strong patience, or severe climate risk—the planner responds by
extracting less in period 1 to preserve groundwater for period 2.

The individual farmer faces a competing externality force that weakens the conservation
incentive.®> Since farmers only internalize share (1 — 6) of how their extraction impacts the
shared water table, the externality # dampens the perceived ability of the individual farmer
to turn period 1 conservation into period 2 extraction — “saving" a unit of extraction today
only converts to a share 1 — @ of extraction tomorrow. As A scales the intertemporal returns
to extraction disproportionately between the social planner than the farmer, this dampening
effect grows in magnitude: the individual farmer perceives a smaller increase in the returns
to conservation than the social planner, widening the wedge between individual and socially

optimal extraction when 6 > 6*.

3.5 Comparative Statics: Climate Maladaptation

Because our model incorporates stochastic rainfall, we are able to examine how welfare
evolves under climate risk. In India, climate change projects to increase the variability of
rainfall and extreme weather events, but not necessarily reduce the overall quantity of rainfall
(Blakeslee, Fishman, and Srinivasan, 2020). We therefore derive two comparative statics that
illustrate how the welfare gaps that arise in our propositions evolve as climate changes.

Comparative Static 1: The wedge between individual and socially optimal extraction

4Conceptually, the wedge can also increase if the social planner increases extraction and the individual
farmer increases extraction more, as in Figure 1, or if the social planner reduces extraction and the individual
farmer reduces extraction by less.

5There is also a “concavity force” that reinforces conservation. By Proposition 1, individual farmers
over-extract in period 1 relative to the planner, operating on a flatter region of the marginal benefit curve.
This raises period 2 costs and reduces period 2 extraction to a steeper region of the marginal benefit curve,
reducing the cost of substituting period 1 extraction for period 2 extraction. However, this force is dominated
by the externality force when 6 > 6*.
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increases with drought probability (1 — p):

0A

T

Due to risk aversion, higher drought probability increases the precautionary savings motive
for both the social planner and the individual farmer. Both may, therefore, reduce extraction
in period 1 to preserve groundwater for extraction in period 2. However, the equilibrium
conditions lead to distortion: individual farmers discount the value of saving groundwater
by (1 — 0), and therefore will reduce their period 1 extract by less than the social planner,
widening the welfare wedge.

Comparative Static 2: The wedge between individual and socially optimal extraction
increases with rainfall variance (mean-preserving spread):

0A
OVar()

A mean-preserving spread in rainfall increases the gap between high and low rainfall
realizations, making drought states more relatively severe when they occur. As a result, the
marginal value of groundwater in bad states increases. The social planner, recognizing this
higher future marginal value, reduces period 1 extraction to preserve water for potential
drought states. Individual farmers, internalizing only (1 — 6) of how their extraction affects
future water availability, respond less to the increased rainfall volatility. This differential
response to extreme outcomes widens the extraction wedge.

These comparative statics demonstrate that extraction externalities determine whether
technology conserves or depletes groundwater. Not only can technology amplify distortions
away from the social optimum (Proposition 3), but these distortions grow as climate becomes
more variable. The interaction between externalities, technology, and climate risk suggests
that efficiency improvements may be particularly counterproductive in settings with both
severe commons problems and increasing climate variability. In the next section, we turn to

our empirical analysis to test whether these theoretical predictions bear out in practice.

4 Data

We begin by describing our empirical environment. Our analysis combines administrative
groundwater records with remote sensing data, policy implementation records, and census
information to construct a comprehensive panel dataset at the subdistrict level spanning

2016-2024. We detail the component pieces of this dataset and their characteristics below.
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4.1 Central Groundwater Board (CGWB)

Data from the India’s Central Groundwater Board (CGWB) provides us with data on
annual total groundwater extraction in five waves: 2016-2017, 2019-2020, 2021-2022, 2022-
2023, and 2023-2024. In addition to extraction (measured in hectare-meters®), the CGWB
provides annual groundwater recharge from rainfall and other sources.

We primarily focus on groundwater extraction, which is measured by observing fluctuations
in the water table at each measurement apparatus in a given subdistrict. The CGWB
maintains a network of monitoring wells across India, with water levels measured four times
per year (pre-monsoon, post-monsoon, and twice during the dry season). These water table
fluctuations are then combined with aquifer-specific yield parameters to convert changes in

water levels to volumetric extraction estimates (CGWB, 2022).

4.2 Water Resources Information System (WRIS)

From India’s Water Resources Information System (WRIS), we obtain data on India’s
major aquifer systems as mapped by the National Water Informatics Centre (NWIC) in 2013.
This hydrogeological assessment classifies India into 14 Principal aquifer systems and 42
Major aquifer systems. We extract aquifer characteristics including transmissivity (how easily
water flows horizontally through the aquifer) and aquifer rock type (for example, alluvial
or hard rock). We match each subdistrict to its underlying aquifer system based on spatial

overlap.

4.3 ABY Program Data

We utilize administrative data and program documents from the Atal Bhujal Yojana for
two purposes. First, we use program documents made public on the program website to
identify the 227 subdistricts selected for treatment. These documents also detail the selection
criteria, which we leverage for identification in our later analyses.

Second, we process the program’s Water Security Plans (WSPs) to understand the
mix of interventions undertaken, reported previously in Figure 6. As a requirement for
receiving ABY funding, each gram panchayat —a village council administering a cluster of
villages — was required to prepare a WSP detailing local hydrological characteristics and
proposed interventions. These plans specify intervention types (such as drip irrigation), total
groundwater use (in hectare-meters), projected reduction in groundwater use as a result of

the intervention, and costs. Of the 8,223 gram panchayats treated under ABY, we obtained

50One hectare-meter (10,000,000 liters) is equivalent in volume to four Olympic swimming pools.
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approximately 8,000 WSPs, of which roughly 6,000 were of sufficient quality to be processed.
Because the WSPs are almost entirely image based — beyond figures, both text and tables are
stored as images within each pdf — extracting from data from them is challenging. We build
a script to process each file into markdown and then into CSV files for further cleaning and
processing. The roughly 2,000 that were unable to be processed has sufficiently low image

quality that data could not be reliably extracted from them.

4.4 Remote Sensing

We use several sources of remote sensing data to complement our traditional data sources.

Land Use (Bhuvan): We obtain annual land use classifications from the Indian Space
Research Organization’s Bhuvan platform at 56-meter spatial resolution for 2016-2019 and
2021-2024 (data are unavailable for 2020). The dataset provides binary land use classifications
for each pixel. We aggregate these data to the subdistrict level and derive two measures of
agricultural intensity: (1) percentage net sown area, calculated as the fraction of subdistrict
area under cultivation in any season in a given year, and (2) percentage of multi-cropped
area, calculated as the share of subdistrict area cropped across multiple agricultural seasons
within the year.

Precipitation (CHIRPS): We obtain daily precipitation data from the Climate Hazards
Group InfraRed Precipitation with Station (CHIRPS) dataset at 0.05° spatial resolution
(approximately 5.5 km). We aggregate these data to the subdistrict level by taking spatial
averages across pixels within each subdistrict boundary. From the daily precipitation series,

we construct seasonal and annual rainfall variables to measure responses to climate variability.

4.5 The SHRUG

The Socioeconomic High-resolution Rural-Urban Geographic Platform for India (SHRUG),
developed by Asher et al. (2021), is an open-access repository that harmonizes multiple
Indian administrative datasets using consistent geographic identifiers based on the 2011
Population Census. We employ SHRUG data for two purposes. First, we use SHRUG’s
subdistrict shapefiles to spatially aggregate our remote sensing data and to geocode subdistrict
identifiers in the CGWB groundwater data, allowing us to link entirety of our data sources
together. Second, we use cross-sectional subdistrict characteristics from the 2020 Mission
Antyodaya survey, a government census of rural infrastructure and amenities. These data

include agricultural infrastructure, development facilities, and demographic characteristics.
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5 Empirical Analysis

5.1 Constructing the Externality Score

Our conceptual framework demonstrates that the impacts of technology improvements that
increase the marginal product of groundwater A depend on the severity of the externality 6.
While ABY, India’s Groundwater Management Scheme, provides us with empirical variation
in A\, we leverage physical aquifer characteristics to generate exogenous variation in 6.

As discussed in Section 2.1.2, extraction externalities arise from the spatial reach of the
cone of depression created when farmers pump groundwater. The lateral extent of this cone
depends on aquifer transmissivity — the product of hydraulic conductivity and saturated
thickness. Higher transmissivity thus generates more severe externalities: an individual’s
extraction impacts more farmers, yet the individual bears only a fraction of the aggregate
cost.

Remote sensing data from India’s Water Resources Information System (WRIS) provides
us with the physical characteristics of India’s Major Aquifer Systems’, including transmissivity.
Using transmissivity (Edwards, 2016, Brozovi¢, Sunding, and Zilberman, 2010), we build
an externality score that leverages the spatial extent of the externality weighted by density
of farming households in a given subdistrict. This density is a fraction, calculated from
2020 Mission Antyodaya data accessed via the SHRUG. The numerator is defined as the
total number of households primarily engaged in farming, and the denominator is the total
number of all households in a given subdistrict. Intuitively, the larger the number of farming
households within a given spatial reach, the more severe the externalities. Formally, for

subdistrict ¢, we define the externality score 6;:

Total Households (10)

Farming Households
0; = Transmissivity, X ( & )
The externality score 6; provides an ordering of externality severity across subdistricts
that corresponds to the theoretical externality parameter ¢ in our model, where higher values
indicate that farmers internalize a smaller fraction of their extraction’s impact on the water
table because they are more hydraulically connected to other farmers in the surrounding

area®. Figure 7 plots the quintiles of this externality score both across the entirety of India

"We provide a map of the spatial boundaries of these major aquifers as well as their principal rock type in
Appendix Figure 13.

8In Appendix section A.1, we discuss how other aquifer characteristics, such as confinement, may impact
how the externality is measured and therefore how subdistricts are ordered in terms of externality severity.
In Appendix section A.2, we construct an alternative externality score that incorporates these considerations
and show that the ordering is preserved.
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and across subdistricts most severely depleting their groundwater resources, as plotted in

Figure 3. Notably, the range of distribution of the externality score is similar in both panels.

Figure 7: Spatial Distribution of the Externality Score

All India Subdistricts of GW Depletion

Il o2 [ +060% 80-100%
Quantile
B 2040 60-80% NA

Note: Both panels plot quintiles of the externality score. The left panel plots the spatial distribution of the
externality score for all subdistricts for which data is available. The right panel plots the spatial distribution
of the externality score for subdistrict that, in 2019-2020, extracted groundwater beyond its natural rate of
recharge, as noted in Figure 3.

For our main analysis, we partition subdistricts based on the median externality score
within our sample, classifying them as high-externality 9? h — 1{6; > gmedian} or low-
externality 0l°* = 1{6; < §™eien} This binary classification simplifies the interpretation of

our later empirical results®.

5.2 Identification Strategy
5.2.1 Base Specification: Difference-in-Differences

To study the impact of ABY on outcomes of interest, we employ a difference-in-differences

design, written as follows:

90ur results are qualitatively similar when using the full scale of the externality score.
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Yie = o + 0 + B(Posty x ABY;) + e (11)

Where Y}; denotes the outcome of interest for subdistrict ¢ in year ¢; a; represents subdis-
trict fixed effects that absorb time-invariant differences between subdistricts; J; represents
year fixed effect that absorb trends over time that do not vary by subdistrict; ABY; = 1
if a subdistrict received ABY, ABY; = 0 otherwise; and Post; = 1 if ¢t > 2020, as ABY
implementation began in early 2020. The coefficient S captures the average treatment effect
on the treated. Event studies are defined analogously, with year specific indicator variable in
place of Post;. Because treatment was assigned on December 25, 2019, and treatment began
in March 2020 for all subdistricts. Treatment timing is therefore uniform across subdistricts,
not staggered.

The validity of our estimates requires addressing potential selection bias arising from
non-random treatment assignment. As discussed in Section 2.2, ABY explicitly targeted
subdistricts exceeding a groundwater extraction-to-recharge ratio of 70%. Furthermore,
because ABY is a cash infusion scheme — it channels funds into existing schemes targeting
groundwater conservation — program administrators needed to select on subdistricts with
sufficient administrative capacity. Selection into ABY was not random, and we address these
concerns in two steps.

We address these selection concerns in two steps.

First, we trim our analysis sample to subdistricts exceeding an extraction-to-recharge ratio
of 70%, prior to treatment. This assuages concerns that treatment and control subdistricts
may have been on different depletion paths prior to the program and therefore, in potential
outcomes, would have been on different trends of depletion in the absence of the program.
Of the 819 subdistrict in India that sit above the threshold, less than 200 received ABY.
There are two primary explanations for this. First, ABY was only implemented in certain
districts of seven states where the density of subdistricts experience groundwater depletion
was highest. However, there were many subdistricts outside of those areas experiencing
similar levels of groundwater stress but may have not been selected purely due to budgetary
constraints. In practice, subdistricts above the 70% could be excluded from treatment if they
did not have sufficient administrative capacity, and subdistricts below the threshold may
have been included if they had sufficient administrative capacity and if farmers reported the
experience of groundwater stress.

We therefore address selection on secondary criteria concerning administrative capacity
and farmers’ experience of groundwater stress. Though program documents do not detail
exactly what characteristics program administrators selected on, we can infer necessary

facilities from how ABY was implemented in practice and match them to covariates in our
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data. We detail these covariates in Appendix Section E, and use them to generate entropy
balancing weights (Hainmueller, 2012), which reweight units our treatment and control groups
to minimize imbalance. In all specifications, we employ these entropy balancing weights and
limit our sample to the region of common support of those weights between treatment and
control groups.'® Conditional on these procedures, we argue that treatment and control units

would have evolved on parallel outcome trends in the absence of treatment.

5.2.2 Heterogeneity: Triple Differences

To understand how the impact of ABY differs by the severity of extraction externalities,

we employ the following triple-differences specification:
Yii = a; + 6, + B1(Posty x ABY;) 4 B2(Post; x ABY; X H?igh) + B3(Post; x Q?igh) + ey (12)

Where 019" = £{6; > §™edian} indicates whether a subdistrict is above the median exter-
nality score. The coefficient 3; captures the treatment effect in low-externality subdistricts;
b1 + B2 captures the treatment effect in high-externality subdistricts; 3o, therefore, captures
the additional differential effect for high-externality subdistricts, while 83 absorbs the time
trend for high-externality subdistricts!!.

The key identifying assumption of triple-difference design is parallel gaps: absent treatment,
the difference in outcomes between high- and low-externality subdistricts would have followed
parallel trends between treatment and control. A central concern is that high- and low-
externality subdistricts may have already been adapting to groundwater scarcity at different
rates, since, theoretically, over-extraction due to the presence of externalities may have made
the need for adaptation more salient. However, we argue that the parallel gaps assumption
is likely to hold for two reasons.!? First, as discussed in Section 2.1.1, the groundwater
depletion crisis in India is relatively recent, limiting the scope for adaptation to have already
occurred differentially. Second, smallholder farmers are typically poor, limiting their ability
to invest in micro-irrigation and adaptive technologies on their own.'? Rather, these farmer

are more likely to adopt these technologies through government subsidies and programs. By

10We retain 799 out of 819 units restricting to common support.

UFormally, there is also another linear term 84(ABY; x 019"}, however, because it is cross-sectional, it is
absorbed by the subdistrict fixed effect «;.

12A third argument involves inspecting pre-trends in the triple-difference coefficient across outcomes. We
report these event studies in Appendix Section B. While these provide suggestive evidence that the parallel
gaps assumption is likely to hold, it is still possible to violate this assumption in potential outcomes, hence
we weight our discussion towards such arguments.

13We do not directly have data on plot size. However, we calculate from 2020 subdistrict data from Mission
Antyodaya that the average cultivated area per farming household is 1.7 hectares in our sample, below the
threshold for a smallholder farm, which is two hectares.

28



construction, ABY funds many such programs. If high-externality subdistricts were more
likely to receive these programs, the externality score should be correlated with treatment.
However, we find that, conditional on district fixed effects, high externality subdistricts
were only 0.8% more likely to receive ABY than low-externality subdistricts. We provide
additional comparisons of the characteristics of high- and low-externality subdistricts in
Appendix Section D, noting that that the parallel gaps assumption restricts only differences
in relative trends, not levels.

With these assumptions in mind, it is important to understand why heterogeneity by
the externality score is useful. In our model, the only difference between the decentralized
(farmer’s) and the social planner’s equilibrium conditions is the intertemporal distortion
(1 — 0), the factor by which the individual farmer discounts how much their extraction
contributes to overall groundwater depletion and, therefore, the future costs of extraction. As
0 — 0, however, the decentralized equilibrium converges to the social planner’s equilibrium.
In other words, when externalities are minimal, the individual farmer is closer to being the de
facto social planner, and the wedge between individual and socially optimal behavior shrinks.
Our empirical externality score 6; allows us to proxy for this wedge. Treatment through
ABY represents an increase in our technology parameter A. The triple-difference coefficient

B2 reports the difference in treatment effects between high- and low-externality subdistricts,

% o aghigh N aelow
OX oA oA

representing how the wedge grows or shrinks in response to technology

upgrading.

5.3 Impacts on Extraction

We begin by examining the treatment effect of ABY on our key outcome, total groundwater
extraction. Figure 8 presents an event study corresponding to the base difference-in-difference
specification in Section 5.2.1. The post-treatment coefficients are neither economically large —
the 2022-2023 coefficient carries the highest magnitude, 1.16%, and we can rule out overall
effect sizes larger approximately 6% in absolute value — nor statistically significant. At face
value, this results implies that micro-irrigation upgrading through ABY had no effect on how
much groundwater farmers extract.

However, when we examine how impacts differ by the externality score, we uncover that
this aggregate effect masks significant heterogeneity. Figure 9 reports the treatment effect for
low-externality (in blue) and high-externality!® (in orange) subdistricts using event study

analogue of the triple-differences specification in Section 5.2.2.

14Note that the orange coefficients represent the treatment effect 81 + B2. The difference between the
orange and blue points is therefore the triple-difference coefficient 5. We include event study plots of §s in
Appendix Section B.
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Figure 8: Aggregate Impact of ABY on Total Groundwater Extraction
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Note: This figure reports event study coeflicients for the analogue to the difference-in-differences specification
from Equation 11. Black dots represent point estimates, and the ribbon reports the 95% confidence interval of
each point estimate. The y-axis outcome is log total extraction and should thus be interpreted as percentage
changes. The x-axis reports the year range, as reported in the CGWB data. Note that, for readability, we do
not plot the time scale proportionally.

he heterogeneous treatment effects in Figure 9 reveal a sharp divergence consistent with
our theoretical predictions. In Table 1, we report the triple-differences estimates to understand
the total treatment effects. These reveal that, for low-externality subdistricts, ABY appears to
have successfully induced farmers to extract less groundwater, a reduction of 9.2% (p < 0.10)
overall. The opposite holds for high-externality subdistricts, which extract 11.0% (p < 0.01)
more groundwater as a result of treatment. This implies a total difference in treatment effects
of 20.2%, over twice the magnitude of the treatment effect in low-externality subdistricts.
This implies that the presence of severe externalities not only nullifies the conservation effect
that ABY has at baseline but reverses it, resulting in an average treatment effect of zero.

This result provides us with empirical evidence for the theoretical result derived in
Proposition 3 of our model: when externalities are sufficiently severe 6§ > 6*, technology
upgrading that increases the marginal product of extracted groundwater exacerbates the
wedge between socially optimal and individual groundwater extraction. The sign reversal —
greater conservation in low-externality areas versus greater depletion in high-externality areas

— represents the starkest possible confirmation of this prediction'®. Furthermore, the divergent

15Note that other, less stark results would still be consistent with Proposition 3. Consider, for example, the
following result: low- and high-externality farmers both extract less as a result of ABY, but low-externality
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Figure 9: Heterogeneous Impacts of ABY by Externality Severity
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Note: This figure reports event study coeflicients for the analogue to the difference-in-differences specification
from Equation 12. Blue dots represent point estimates for the base effect, or the treatment effect for
low-externality subdistricts, £1, and orange dots report the treatment effect for high-externality subdistricts,
51 + B2. The separate difference-in-difference and triple-difference plots can be found in Appendix Section
B. The ribbons report the 95% confidence interval of each point estimate. The y-axis outcome is log total
extraction and should thus be interpreted as percentage changes.

results provide insight on Proposition 2, which states that whether irrigation efficiency
improvements cause farmers to reduce or increase extraction is theoretically ambiguous,
as it depends on other parameters of the model. That the treatment effects of high- and
low-externality subdistricts take opposite signs implies that a key parameter determining the

sign in Proposition 2 is the externality itself.

5.4 Impacts on Cultivation Intensity

Having established how ABY impacts farmers’ choices of groundwater extraction, we now
turn to mechanisms: how does technology upgrading impact how farmers use groundwater?
Prior evidence suggests that irrigation technology can affect agricultural production decisions:
enabling cultivation of water-intensive crops, expanding cultivated area, or cultivating the
existing plots more frequently over the same year (multi-cropping) (Pfeiffer and Lin, 2014,
Fishman, Giné, and Jacoby, 2023, Grafton et al., 2018). While data limitations preclude

farmer reduce their extraction by more than high-externality farmers. This would suggest that the wedge
between socially optimal and individual extraction grows, but it does not imply that technology exacerbates
depletion in high-externality subdistricts.
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reliable analysis on agricultural yields or crop switching!®, we can explore land use adjustments

along two observable margins:

1. Extensive margin: the percentage of land in a given subdistrict that is sown under
any season during a given year (percentage of land net sown). For brevity in notation,

we refer to this as net sown land.

2. Intensive margin: the percentage of land in a given subdistrict that is sown across

multiple seasons within the same years. We refer to this as “multi-cultivated” area.

We report the results on these event studies in Figure 10 and we report the triple-
difference coefficients in Table 1. The blue lines report the treatment effects for low-externality
subdistricts. While the results on both net sown land and multi-cultivated area are both
statistically indistinguishable from zero, they may, in context, suggest another margin of
success for ABY. Previously, we observed that low-externality subdistricts extract less
groundwater overall following ABY. The results on land use, therefore, suggest that farmers
are able to maintain the same cultivation intensity while using less groundwater, consistent

with the conservation objectives of ABY.

Figure 10: Heterogeneous Impact of ABY on Cultivation Intensity
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Note: The left panel reports the percentage of land sown under any season. The right panel reports the
percentage of land that is cropped over multiple seasons within the same year. In both cases, the units of the
event study coefficients are percentage points

By contrast, we observe that high-externality subdistricts intensify their land use. While
it does not appear that they significantly expand the area of cultivation, they do appear to

16Ground truth data on agricultural yields and crop-specific output is only available at the district-level
for our sample period. A common alternative approach uses remote sensing data on vegetation. We include
additional results on vegetation and a brief discussion of the concerns with using such data in Appendix
Section C.
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sow the same area over more seasons, consistent with prior literature showing that farmers
exploit efficiency gains from micro-irrigation to increase production and total groundwater
use. This effect is economically large, a 3.5pp difference from low-externality subdistricts
and a 2.4pp total treatment effect on net, an effect size of approximately 10% relative to the
pre-treatment, low-externality control mean. While this may be welfare-enhancing in the
short-run, the effects appear short-lived, as land use patterns return to their pre-ABY levels
in the later stages of our data, despite increased groundwater use persisting. This presents a
puzzle that we explore through our further results.

The welfare implications of these patterns in high-externality subdistricts depend on the
underlying mechanisms that cause land use patterns to revert despite persistently higher
levels of groundwater utilization. One possible explanation is that farmers initially use
multi-cropping to build liquidity to purchase the inputs for higher-value crop varieties. In
this case, it is not obvious that farmers are worse off. However, recent literature shows that
such adaptations are rare in the short run (Burlig, Preonas, and Woerman, 2021). A second
explanation could be diminished water quality. As aquifers deplete, the quality of water often
diminishes as total dissolved solids often settle lower in the aquifer. In this case, farmers may
still extract more groundwater by volume, but the productivity of that water may be lower as
water levels fall. Though our empirical environment precludes examination of either of these
channels'”, we argue that it is unlikely that increased groundwater extraction and briefly
intensified land use are indicative of welfare gains. More plausibly, the pattern could reflect
unsustainable intensification that may have left farmers more exposed to climate shocks — a

possibility we explore directly in the next section.

1"While the CGWB has long-run, well-level data on both groundwater levels and groundwater quality, the
wells are measured too sparsely across time and space to provide reliable insights on either over our 10-year
sample period. ABY provides more frequent measurements of water quality for treated subdistricts but not
control subdistricts.
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Table 1: Triple-Differences Results: Groundwater Extraction and Land Use

(1) (2) (3)

Log(Total Pct. Net Sown Pct. Area Multi-

Extraction) Area Cultivated

Post x ABY -0.097* -0.002 -0.011

(0.053) (0.010) (0.015)
Post x ABY x High Ext. 0.207*** 0.004 0.035*

(0.065) (0.014) (0.021)
Subdistricts 776 776 776
Control Mean 9,103.68 (ha-m) 0.383 0.201
Coef. Units % change pp pp

Notes: * p<0.10, ** p<0.05, *** p<0.01. Standard errors clustered at subdistrict level in parentheses.
All regressions include subdistrict and year fixed effects and are weighted using entropy balancing weights.
Control means are pre-treatment (2015-2019) means for low externality areas. Log total extraction, as
measured by the CGWB, described the total groundwater extraction in a given subdistrict for any purpose.
The percentage of land net sown reports the total area of land sown under any season within a given year.
The percentage of multi-cultivated land reports the total area of land sown across multiple seasons within the
same year. Both land use variables are contained in the Bhuvan Land Use data.

5.5 Climate (Mal)adaptation

Groundwater acts as a buffer stock for agricultural production, enabling farmers to smooth
water input and hence agricultural output across climate shocks. When rainfall is insufficient
for crop growth, farmers extract groundwater as a substitute, allowing them to maintain
total water input despite weather variability (Fishman, Devineni, and Raman, 2015, Taraz,
2017). This smoothing mechanism becomes increasingly critical as climate change intensifies
rainfall variability (Burke, Hsiang, and Miguel, 2015). In this section, we examine whether
irrigation technology bolsters or undermines this climate-adaptive capacity.

First, we establish the baseline relationship between rainfall and extraction. The rainfall
thresholds that trigger increased groundwater use may vary by crop (Schlenker and Roberts,
2009, Hogan and Schlenker, 2024), as water requirements may vary by plant. In the absence
of crop-specific data, we empirically identify the relevant rainfall thresholds below which
farmers extract more water by regressing pre-treatment extraction on rainfall bins. Figure 11
illustrates that farmers extract approximately 10% more groundwater once annual rainfall
falls to 500-700mm relative to the median (900mm-1100mm).

We use this low rain threshold to examine how ABY affects farmers’ ability to smooth
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Figure 11: Extraction by Rainfall Bin, Pre-Treatment
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Note: This figure reports log total groundwater extraction for a given subdistrict in a given bin of total annual
rainfall. To avoid conflating these behaviors with treatment effects, we restrict our sample to 2016-2017 and
2019-2020 in the CGWB data, prior to ABY treatment. We include subdistrict and year fixed effects to
absorb cross-sectional differences across subdistricts and country-wide trends that may correlate with rainfall,
respectively. We use the 900-1100, rainfall bin as the reference bin, which is the median of the subdistricts
in our analysis sample. All coefficients should therefore be interpreted and the percentage difference in
extraction from approximately normal rainfall.

total water input across rainfall shocks. Our specification adapts the triple-differences design
in Section 5.2.2 as follows, which we run separately for high-externality and low-externality

subdistricts:
Yii = a; + 0y + 1 (Post, x ABY;) + fo(Post; x ABY; x LowRain;;) + S3LowRain; + ¢; (13)

Where LowRain; is an an indicator for whether annual total rainfall in subdistrict 7 at time
t was below a chosen threshold. For our main analysis, we choose 600mm, the midpoint of
the bin identified in Figure 11. We run this regression separately for low- and high-externality
subdistricts. As with the previous triple-differences design, we include subdistrict and year
fixed effects and employ entropy balancing weights as described in Section 5.2.1 and Appendix
Section E.

Identification in this design requires that the drought response differential between ABY
and non-ABY subdistricts would have remained constant absent treatment. A key concern is
that the composition of drought-affected areas changes from year to year as Low Rain;; varies.

We therefore require two assumptions: (1) conditional on fixed effects, drought incidence is
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as-good-as-random and uncorrelated with treatment status, and (2) treatment itself does
not affect the probability of experiencing drought. While recent literature suggests that
large-scale irrigation can impact rainfall patterns (Braun and Schlenker, 2023), ABY affects
only 227 subdistricts out of nearly 6,000 in India—too small a footprint to influence regional
precipitation. Moreover, rainfall patterns are determined by monsoon systems operating at
much larger spatial scales. We therefore argue that drought incidence remains exogenous to
treatment, and thus our identifying assumptions are likely to hold.

We report the results of this specification in Figure 12'®. The dark lines and point
estimates represent the triple difference coefficients — the differential extraction response to
low rain — while the lighter lines and point estimates represent the impact on extraction when

rainfall is above the low rain threshold.

Figure 12: Impacts of ABY on Climate Smoothing
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Note: This figure reports the event study coefficients analogous to the triple-differences specification in 13.
The left panel reports coefficients for low-externality subdistricts, while the right panel reports coefficients for
high-externality subdistrict. Darker dots are point estimates for subdistricts experiencing annual rainfall
below 600mm, while lighter dots report point estimates for subdistricts experiencing rainfall at or above
600mm. In both panels, the outcome is log total groundwater extraction, and thus the y-axis should be
interpreted as percentages. Ribbons report the 95% confidence interval of each point estimate.

In order to interpret these results, we return the intuition of the policymaker. In subsidizing
more efficient micro-irrigation technology, ABY intended for farmers to conserve groundwater,

replenishing water tables. Replenished water tables would bolster farmers’ ability to adapt to

18We include additional results on different thresholds in Appendix Section B, which exhibit similar patterns.
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climate shocks, as they are more able to smooth water input over periods of low rain. In the
context of our regression, this would manifest as farmers reducing their extraction post-ABY
during periods of normal rainfall (lighter lines) and either increasing or maintaining their
extraction during periods of low rain (darker lines).

This is precisely the pattern we observe in the low-externality subdistricts in the left
panel of Figure 12 — consistent with the climate adaptation intended by ABY policymakers.
However, in the right panel, we observe the opposite pattern in high-externality subdistricts.
Having established from Figure 9 that these subdistricts increase their total groundwater
extraction, it appears that they do so by extracting more during periods of normal rainfall,
compromising their ability to extract when rainfall is low. Furthermore the decreasing trend
in low-rain extraction may explain the land use patterns in Figure 10. Farmers’ extraction
during drought falls during the same periods when intensified land use recedes. It is plausible,
therefore, that farmers are unable to sustain intensified land use due to increased susceptibility
to climate shocks. Relative to low-externality subdistrict, it appears that technology is climate
maladaptive when externalities are severe.

These divergent patterns in climate adaptation connect directly to our model. Both of our

comparative statics, a(?ép) and avif( ok show that the extraction wedge between individual
and socially optimal extraction widens with climate risk because the presence of externalities
distort farmers’ precautionary savings motive. Our empirical results are consistent with
this prediction: technology upgrading in high-externality subdistricts not only increases
total groundwater extraction but also compromises farmers’ ability to smooth production
over climate shocks. This climate maladaptation, through the lens of the model, implies
unambiguous welfare losses — farmers face increased exposure to rainfall variability while

simultaneously depleting the buffer stock needed to cope with it.

6 Conclusion and Policy Implications

In the classic tragedy of the commons, individuals acting in their own self-interest over-
extract a common pool resource, leading to welfare losses for all who share it. A standard
feature of the tragedy of the commons is the presence of negative externalities — costs imposed
on others that are not internalized by the individual user. Typically, such distortions justify
intervention to correct them. A natural policy response is to improve extraction efficiency,
enabling users to obtain more output per unit of the resource extracted. In this paper, we
argue that the conditions that typically justify an such an intervention in common pool
settings may also mediate whether it ameliorates or exacerbates over-extraction.

Today, groundwater depletion in India reflects the quintessential tragedy of the commons.
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Exploiting physical variation in externalities and a multi-state groundwater management
scheme, we show that technologies intended to reduce groundwater extraction may instead
increase it if externalities are sufficiently severe. We find that subsidies for micro-irrigation
— technologies that increase the marginal product of groundwater but do not impact the
ability to extract it — reduce groundwater extraction where externalities are low by 9.2% but
increase it by 11.0% where externalities are high. High-externality farmers appear to use
the additional groundwater to sow the same land over more seasons within the same year.
However, this appears unsustainable even in the short-run. Increased extraction appears to
compromise their ability to smooth over rainfall shocks. Low-externality farmers, however,
maintain the same cropping intensity with less groundwater input, and they are better able
to buffer against rainfall variability. Interpreted through our theoretical framework, this
suggests that the impact of technological interventions on common pool resource depletion
and welfare may depend principally on the conditions that have led to depletion to begin
with.

Our findings contribute to a growing recognition that efficiency improvements often fail
to lead to conservation in common pool settings. While previous work primarily identifies
how individuals adjust their resource use, we identify the structural conditions determining
why these failures occur. Furthermore, we complement prior work identifying externalities as
a central mediator in resource depletion, for example in fisheries (Squires and Vestergaard,
2013), by providing a theoretical framework that applies more generally to common pool
resource use and elucidates the fundamental drivers of technological backfire in such settings.

The policy implications challenge conventional approaches to resource conservation in
developing countries. In the developing world, institutions are seldom strong enough to
implement the classic solutions to the tragedy of the commons, such as Pigouvian taxation
and Coasean bargaining. To policymakers in these contexts, subsidizing irrigation efficiency
improvements is one of the few interventions that is both institutionally feasible and politically
palatable. While our empirical findings suggest that such interventions may be fundamentally
risky, our theoretical framework allows us to consider other policy instruments that are
both institutionally-light and lead to conservation. Interventions that directly impact the
costs or returns to agricultural effort also impact incentives to extract the groundwater to
sustain it. Under minor modifications to our model, one can show that an unconditional cash
transfer, by substituting for the returns to cultivation, may not only lead to groundwater
conservation but also shrink the wedge between individual and socially optimal extraction.
When farmers supply their own labor — as is typical among Indian smallholders — cash transfers

substitute for agricultural income without requiring water inputs, reducing extraction through
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both income and substitution effects'®. As others have argued (Chatterjee, Lamba, and
Zaveri, 2024), cash transfer programs, such as the 2018 PM-Kisan basic income scheme,
or workfare programs, such as the 2005 Mahatma Gandhi National Rural Employment
Guarantee Scheme (MGNREGS), may thus offer unintended conservation benefits. Though
neither program explicitly targets groundwater conservation, both provide income alternatives
that reduce farmers’ dependence on agricultural production and, consequently, groundwater.
This warrants a new avenue of future research; the policies that most successfully conserve

groundwater may not be the policies that directly target it.

19Consider augmenting the model with labor input L where production depends on both soil moisture
and labor: y = f(z, L) with complementarity, and utility U(C') — ¢(L) where ¢(L) is convex (e.g., the
same effort becomes more unpleasant as farmers fatigue). An unconditional transfer T enters additively:
Uly—=x-D+T)— ¢(L). While the income effect is ambiguous—the transfer reduces marginal utility of
output but also relaxes budget constraints for extraction — the substitution effect dominates when labor has
convex disutility. The transfer provides income without requiring the complementary labor and water inputs
needed for agricultural production. Since cultivation requires both effort and irrigation, farmers reduce both
labor and extraction when given alternative income. Moreover, because the individual over-extracts relative
to the planner (discounting future costs by (1 — 6)), this substitution effect is stronger for the individual
farmer, thereby shrinking the extraction wedge.
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Main Appendix

A Additional Characteristics of Aquifers

A.1 Confined vs. Unconfined Aquifers

Aquifers differ not only in how easily water flows through them but also in how the water
is stored. An unconfined aquifer is the simplest case: it sits near the surface, and its upper
boundary of the structure is the water table itself. The pores within the soil or rock are
partly filled with air and partly with water, and the water table rises and falls with rainfall or
pumping. Because the surface of the aquifer is uncovered, the water is at normal atmospheric
pressure. When farmers pump from such an aquifer, they physically lower the water table,
draining the spaces between grains much like water leaving a sponge. These systems generally
have high storage capacity — known as specific yield — because a relatively large share of their
water can drain out under gravity.

A confined aquifer, by contrast, lies deeper underground, between layers of clay or
rock that are less permeable. These confining layers trap the water so that it is completely
saturated and under pressure. When a well penetrates this layer, water may even rise up
the well — sometimes above the top of the aquifer — because it is released from that pressure.
Pumping from a confined aquifer does not drain pore spaces; instead, it slightly reduces the
internal pressure of the water storage structure and allows a very small amount of water to
expand from compression of the rock—water system. This means confined aquifers have much
smaller storage, or storativity, than unconfined ones: a small change in volume or pressure
can affect water availability across a much larger area.

In between these two types are semi-confined aquifers, where thin, partially permeable
layers allow slow vertical leakage between zones. Over short timescales they behave like
confined systems, but over longer periods they gradually equilibrate like unconfined ones.

From an economic perspective, these physical differences shape how far one farmer’s
pumping affects others. In unconfined aquifers, where storage is large, the effects of pumping
tend to remain more local, propagating through the cone of depression; in confined or semi-
confined aquifers, where storage is small, a given unit of extraction causes a change in hydraulic
pressure that can propagate over a wider area. Two distinct but related hydrogeological
measures capture these mechanisms. Specific yield (S,) denotes the fraction of an unconfined
aquifer’s volume that can drain under gravity as the water table declines, with typical values
ranging from 0.01 to 0.30. storativity (S) is the broader storage coefficient, defined as the
volume of water released per unit surface area of aquifer per unit decline in hydraulic head.
In unconfined aquifers this reflects gravity drainage; in confined aquifers it reflects elastic
compression of the rock-water system. In unconfined settings S ~ S,; in confined settings S
s much smaller (typically 0.00001 to 0.001) and reflects elastic compression of the rock-water
system rather than drainage (Woessner and Poeter, 2020).

A.2 Robustness of the Externality Score

Our main analysis measures the severity of groundwater extraction externalities with
aquifer transmissivity and local farmer density. Transmissivity (7;) captures the lateral ease
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of flow—and thus the spatial reach of depletion—while farmer density scales how many users
are potentially affected within that reach. For subdistrict ¢,

(14)

Farming Household
0; = Transmissivity,; X ( arming Househo S)

Total Households

While this measure abstracts from aquifer confinement, India’s WRIS dataset reports
confinement categories inconsistently across states. To the degree that WRIS does report
confinement within aquifer boundaries, they are almost always unconfined. To verify that
this simplification does not meaningfully affect our results, we construct an alternative,
storage-adjusted variant that accounts for the aquifer’s ability to release water. Specifically,
we replace transmissivity with the ratio of transmissivity to specific yield (S, ), which serves
as an observable proxy for aquifer storage:

i Transmissivity;, y <Farming Households)

P Specific Yield, Total Households

Dividing by S,; increases the score in aquifers with lower storage (more confined behavior),
reflecting that a given extraction induces pressure changes that propagate farther through
the aquifer.

Although this adjustment incorporates an additional hydrological mechanism, it yields
an almost identical spatial ordering of subdistricts. The rank correlation between 6; and
6; is 0.982 (Kendall’s 7 = 0.895), indicating near-perfect concordance in the ordering of
subdistricts. This stability arises because transmissivity and specific yield are strongly
correlated (p = 0.73) — both are higher in coarse, permeable sediments — and transmissivity
exhibits substantially greater relative variation across subdistricts. Moreover, 94 percent of
subdistricts classified in the top decile of 6; also appear in the top decile of §;, implying that
the identification of high-externality areas is effectively invariant to the inclusion of storage
characteristics.

Furthermore, the WRIS-reported specific yield values in our data (range: 0.01-0.085,
median: 0.037) fall within the unconfined range and are several orders of magnitude larger
than confined aquifer storage coefficients, as we discussed in the previous section. This is
consistent with WRIS confinement classifications, which report most aquifers in our study
area as unconfined or semi-confined. This indicates that aquifers under consideration in
our study are largely unconfined and, therefore, cone-of-depression dynamics appropriately
characterize extraction externalities. Because of this and because the relative ordering of
externality severity is unchanged, we proceed with the baseline transmissivity-weighted score
in our main analysis.

B Additional Figures
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Figure 13: Map: Major Aquifers of India with Rock Type
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Figure 15: Base Event Study, Percentage of Land Net Sown
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Figure 16: Triple Difference Coefficient, Percentage of Land Net Sown
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Figure 17: Base Event Study, Percentage of Multi-Cultivated Land

Pct. Land Sown Multiple Seasons

0.025

Estimate and 95% CI

-0.025

2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

Figure 18: Triple Difference Coefficient, Percentage of Multi-Cultivated Land
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Figure 20: Impacts of ABY on Climate Smoothing (500mm)
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C Vegetation and Evapotranspiration

C.1 Vegetation

Ground-truth data on agricultural output at the subdistrict level are not publicly available
in India for our sample period. We therefore use satellite-based vegetation indices from
NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). Specifically, we employ
the Enhanced Vegetation Index (EVI), which measures vegetation greenness based on reflected
light in visible and near-infrared wavelengths. Following Asher and Novosad (2020), we
construct a proxy for agricultural yield by subtracting mean EVI during the planting period
from maximum EVI across the growing season. Intuitively, this procedure differences out
non-agricultural vegetation. We refer to this measure as EVI delta.

To test where EVI delta reasonably approximates ground truth data, We aggregate the
EVI delta to the district level and plot it against district-level crop production data from the
Directorate of Economics and Statistics for Agriculture, We see in Figure 22 that, though
the correlation is positive, the relationship appears weak. Given these validation concerns
and previous research assessing the validity of vegetation indices as proxies for crop yields
(Jin et al., 2018), we do not include EVI-based analyses in our main results.

Figure 22: EVI Validation vs. Ground Truth
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C.2 Evapotranspiration

In this section, we provide additional results on evapotranspiration (ET'), measured as the
sum of evaporation and transpiration, the water consumed by plants and evaporated through
its leaves. We obtain ET estimates from NASA’s MODIS at 500-meter resolution in 8-day
composites. We aggregate the 8-day ET values to the subdistrict level.

Because ET measures the total water consumption by plants, it is commonly used as
a measure of plant health and agricultural water input. We measure two outcomes, the
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Figure 23: EVI Delta, by Season
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intra-season mean and the intra-season coefficient of variation of ET. The former informs
whether plants consumed more water overall throughout the season, while the latter reveals
whether that consumption was smooth. We focus on the Kharif (Monsoon) season because
Kharif crops are typically rain-dependent. Thus, Kharif crops are more vulnerable to volatility
in rainfall, and groundwater has a more salient purpose as a substitute for rainfall when it
is insufficient. The event study graphs in Figure and 24 report coefficients using a nearly
identical triple-differences to that in Section 5.2.2. The sole difference is that, to isolate the
effect of irrigation input, we control for the intra-season mean and the intra-season coefficient
of variation of rain. The residual variation in ET is then, arguably, the water input to crops
that is not able to be explained by variation in rainfall, which is presumably from groundwater
irrigation.

Figure 24: Evapotranspiration, Kharif
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D Additional Tables

Table 2: Groundwater as Buffer Stock

Dep. Var: Log(Extraction) (1) (2) (3) (4)
Low Rain  Low Rain Low Rain x Low Rain X
High Volatility High Volatility
Low Rain 0.030%*** 0.114%%* -0.028** 0.004
(0.011) (0.028) (0.013) (0.027)
Low Rain x High Volatility 0.089%** 0.207%**
(0.018) (0.049)
Sample Control  Full Sample Control Full Sample
Years All Pre-ABY All Pre-ABY
N 3,392 1,505 3,392 1,505

OLS regressions with Log(Extraction) as dependent variable. Low Rain = 1 if annual rainfall is less than
750mm. Columns vary independent variable and sample. All specifications include subdistrict and year fixed
effects. Standard errors clustered at the subdistrict level. Units are entropy balanced for consistency with
main regression results.
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Table 3: Comparison of High- vs Low-Externality Subdistricts (Analysis Sample)

High Externality  Low Externality

Variable Mean SD Mean SD Diff
A. Geographic and Physical Characteristics
Elevation (mean, meters) 193.3  (105.2) 371.2  (165.5) —177.9
Elevation (std dev) 1488 (2621) 4887  (44.83)  —33.99
Terrain Ruggedness Index (mean) 4.06 (1.39) 5.65 (2.92) —1.60
Terrain Ruggedness Index (std dev) 2.41 (1.73) 4.79 (3.16) —2.38
Annual Total Precipitation (mm) 975.8  (334.1) 969.4  (557.7) 6.4
Intra-annual SD of Rainfall (mm) 2134  (72.1) 192.5 (75.0) 20.9
Average Groundwater Depth (meters) 10.82  (4.37) 14.92 (6.46) —4.10
B. Agricultural Structure and Intensity
Share of Sown Area Irrigated 0.975 (0.321) 0.808  (3.839) 0.167
Share of Irrigated Area with Drip/Sprinkler 0.140  (0.142)  0.227  (0.159)  —0.086
Share of Cultivable Area Sown 0.647  (0.135)  0.626  (0.170)  0.021
Share of Sown Area in Kharif Season 0.913  (0.101)  0.897  (0.202) 0.016
Share of Sown Area in Rabi Season 0.814  (0.157)  0.622  (0.238) 0.191
Share of Sown Area in Other Seasons 0.206  (0.119) 0.238  (0.208)  —0.032
C. Irrigation Sources
Share Trrigated by Canal 0.128 (0.189)  0.092  (0.148) 0.035
Share Irrigated by Groundwater 0.755  (0.215)  0.725  (0.230) 0.030
Share Irrigated by Surface Water 0.036  (0.066) 0.055  (0.087)  —0.019
Share Irrigated by Other Sources 0.081  (0.097) 0.127  (0.160)  —0.046
D. Infrastructure and Services
Share of Households with Piped Water 0.278 (0.264) 0.261  (0.190) 0.017
Has Internal Paved Road 0.494  (0.224) 0.497  (0.182) —0.003
Connected to All-Weather Road 0.859 (0.113) 0.812  (0.136) 0.047
Has Panchayat Building 0.657  (0.199) 0.675  (0.185)  —0.018
Broadband Available 0.481 (0.235) 0.498  (0.240)  —0.017
Bank Available 0.292  (0.158)  0.301 (0.205) —0.009
ATM Available 0.181  (0.141) 0223  (0.187)  —0.042
E. Agricultural and Environmental Support Services
Fertilizer Shop Available 0.270  (0.181) 0.335  (0.210)  —0.066
Soil Testing Center Available 0.057  (0.099) 0.070  (0.085)  —0.013
Government Seed Center Available 0.162  (0.137)  0.225  (0.147)  —0.063
Livestock Extension Services Available 0.305  (0.227) 0.453  (0.230)  —0.148
Rainwater Harvesting System Available 0.526  (0.243)  0.575  (0.212)  —0.049
Watershed Development Program Available  0.180  (0.192)  0.301  (0.194)  —0.121
F. Land and Demographics
Total Households 66,946 (42,673) 51,670 (23,690) 15,276
Households in Farm Activities 37,675 (26,795) 29,247 (13,584) 8,428
Share of Households in Farm Activities 0.552  (0.144)  0.576  (0.143)  —0.024
Share of Households in Non-Farm Activities 0.251  (0.097)  0.204  (0.100) 0.047
Land Area (sq. km) 584.4  (357.4) 1,036.3 (1,308.1) —451.9
Net Sown Area (hectares) 35,463 (26,130) 43,869 (37,464) —8,406
Total Cultivable Area (hectares) 53,516 (33,682) 73,286 (65,065) —19,770

Notes: This table compares pre-treatment characteristics between subdistricts with high and low externality
scores in the analysis sample (Stage of Groundwater Extraction > 70%). Means and standard deviations (in
parentheses) are shown for each group.
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Table 4: Comparison of High- vs Low-Externality Subdistricts (Full Sample)

High Externality  Low Externality

Variable Mean SD Mean SD Dift
A. Geographic and Physical Characteristics
Elevation (mean, meters) 153.1  (227.3) 499.2  (559.7) —346.1
Elevation (std dev) 31.36  (71.37) 97.08 (153.66) —65.72
Terrain Ruggedness Index (mean) 5.17 (4.76) 9.28 (9.40) —411
Terrain Ruggedness Index (std dev) 3.52 (3.68) 6.75 (5.23) —3.23
Annual Total Precipitation (mm) 1,356.3 (561.6) 1,190.1 (607.3)  166.2
Intra-annual SD of Rainfall (mm) 2134 (72.1) 1925  (75.0) 20.9
Average Groundwater Depth (meters) 7.97 (3.38) 11.05 (4.22) —3.08
B. Agricultural Structure and Intensity
Share of Sown Area Irrigated 0.788  (0.386)  1.328 (38.742) —0.540
Share of Irrigated Area with Drip/Sprinkler ~ 0.162  (0.147)  0.219  (0.172) —0.057
Share of Cultivable Area Sown 0.607  (0.156) 0.596  (0.166)  0.011
Share of Sown Area in Kharif Season 0.896  (0.133)  0.897  (0.173) —0.001
Share of Sown Area in Rabi Season 0.667  (0.230)  0.535  (0.229)  0.132
Share of Sown Area in Other Seasons 0.240  (0.151)  0.237  (0.187)  0.003
C. Irrigation Sources
Share Irrigated by Canal 0.229  (0.281) 0.147  (0.212)  0.083
Share Irrigated by Groundwater 0.517  (0.317)  0.533  (0.319) —0.016
Share Irrigated by Surface Water 0.091  (0.136) 0.112  (0.152) —0.020
Share Irrigated by Other Sources 0.163  (0.181) 0.208  (0.219) —0.046
D. Infrastructure and Services
Share of Households with Piped Water 0.252  (0.238) 0.354  (0.272) —0.102
Has Internal Paved Road 0.513  (0.233)  0.520  (0.223) —0.006
Connected to All-Weather Road 0.789  (0.178) 0.783  (0.191)  0.006
Has Panchayat Building 0.575  (0.263)  0.685  (0.242) —0.110
Broadband Available 0.476  (0.262)  0.488  (0.270) —0.012
Bank Available 0276  (0.174)  0.266  (0.206)  0.010
ATM Available 0.183  (0.159)  0.191 (0.196)  —0.007
E. Agricultural and Environmental Support Services
Fertilizer Shop Available 0.296  (0.226)  0.301  (0.245) —0.004
Soil Testing Center Available 0.057  (0.105) 0.074  (0.132) —0.017
Government Seed Center Available 0.147  (0.161) 0.197  (0.196) —0.049
Livestock Extension Services Available 0.303  (0.248)  0.437  (0.272) —0.134
Rainwater Harvesting System Available 0.421  (0.266) 0.530  (0.253) —0.109
Watershed Development Program Available  0.171  (0.185)  0.263  (0.212) —0.093
F. Land and Demographics
Total Households 45427 (36,468) 31,481 (24,151) 13,946
Households in Farm Activities 24,022 (22,895) 17,408 (12,446) 6,614
Share of Households in Farm Activities 0.526  (0.157)  0.592  (0.162) —0.066
Share of Households in Non-Farm Activities 0.232 ~ (0.098)  0.200  (0.101)  0.032
Land Area (sq. km) 3475 (308.2) 5574 (688.4) —209.9
Net Sown Area (hectares) 18,499 (19,396) 22,106 (24,472) —3,608
Total Cultivable Area (hectares) 30,004 (27,894) 37,378 (40,735) —7,374

Notes: This table compares pre-treatment characteristics between subdistricts with high and low externality
scores in the full sample (all levels of groundwater development). Means and standard deviations (in
parentheses) are shown for each group.

56



E Entropy Balancing

We select the following variables from the 2020 Mission Antyodaya survey on village
facilities (items 1-3), aquifer data from the WRIS (item 4), and remote sensing data (item 5).
All are measured prior to treatment.

1. Existence of Village Council Office (Panchayat Bhawan)
2. Existence of a Watershed Development Program

3. Area Under Efficient Irrigation

4. Average Aquifer Depth

5. Evapotranspiration, Seasonal Means and Standard Deviations

Items 1-3 concern mechanical parts of ABY implementation, while items 4 and 5 concern
farmers’ experience of groundwater stress. In order to receive funding, each village council
(gram panchayat) needed to construct a budget in consultation with surrounding villages.
This required a physical office in which to do so, justifying item 1. Items 2 and 3 arise from
how ABY is implemented — by funding existing programs. Watershed development programs
describe a general class of government schemes targeting sustainable use and conservation of
water, including groundwater?’, precisely the programs that ABY funds. A similar logic holds
for the area under efficient irrigation methods — these technologies are predominantly adopted
with the help of government programs?', and thus ABY often funds micro-irrigation through
these schemes. Finally, though program documents do not directly state what constitutes
the experience of groundwater stress, we intuit that two main factors may contribute. First
aquifer depth, the distance below ground level of the aquifer itself, not its thickness, may
contribute the experience of groundwater being more difficult to access and thus may lead to
distress over its availability. Second, evapotranspiration measure the sum of transpiration —
water consumed by plants and evaporated through its leaves — and evaporation. Commonly
used as an indicator of plant health, low means of evapotranspiration can indicate insufficient
water input. The standard deviation of evapotranspiration may indicate lumpy water input,
which may occur if, for example, farmers are not able to smooth over intra-season variability
of rain using groundwater.

Using these variables we generate both entropy balancing weights (Hainmueller, 2012)
and inverse propensity score weights. We report the diagnostics of these weights in Table
5. In our main specifications, we prefer entropy balancing weights due to superior balance
and larger region of common support between the weights of the treated and control groups,
however our results are qualitatively similar using inverse propensity score weights. Figure
25, reports the imbalance between control and treated groups in the covariates before and
after entropy weighting.

20Tn practice, these programs can also target surface water sources and canals. In our trimmed sample, less
than 5% of villages use surface water for irrigation and less than 12% have canals.

2'India’s flagship micro-irrigation program is Pradhan Mantri Krishi Sinchai Yojana (PMKSY), which
ABY targets. Our data do not allow us to measure the PMKSY treatment directly.
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Table 5: Diagnostics: Entropy Balancing vs. Inverse Propensity Score Weights

Entropy Balancing IPW
Effective Sample Size 564.4 (68.9%) 641.9 (80.5%)
Maximum Weight 17.4 10.6
Common Support 795 (97.1%) 723 (90.6%)
Covariate Joint AUC 0.776

Figure 25: Covariates Before and After Entropy Balancing
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Model Appendix

For completeness, we restate the setup of the model and provide more formal derivations
of our propositions and comparative statics below.

F Model Setup

We consider a continuum of farmers indexed by i € [0, 1]. The model has two periods.
We assume model parameters ensure interior solutions throughout.

Each farmer chooses a groundwater extraction rate x;(t) > 0. Aggregate extraction is
X(t) = fol x;(t)di. Each farmer begins with an initial depth to water d;(1) = D(1).

F.1 Moisture Index and Rainfall

Total moisture reaching crops is:

Rainfall R(t) is stochastic. For period 2, we consider a binary distribution for simplicity:

R(2) = Ry with probability p
| R, with probability 1 — p

Period 1 rain R; is known when x;(1) is chosen. The parameter A > 0 is irrigation efficiency —
scaling how effectively a unit of groundwater turns into agricultural yield — and p € (0,1] is
the utilization rate of rainfall — the share of rainfall that turns into effective soil moisture to
feed crops.

F.2 Production, Costs, and Preferences

Yield is concave in soil moisture:
yi(t) = log(zi(t))
The cost of extraction is linear in depth:
U(ai(t), di(t)) = i(t) - di(t)
Consumption is output net of extraction cost:
ci(t) = log(Azi(t) + pR(t)) — i(t) - di(t)

Utility is CRRA with coefficient v > 0:



F.3 Extraction Cost Externality

The change in depth to water for farmer 7 is:
di(t) — di(t —1) = (1 = O)z;(t) + 60X () — (1 — p)R(t)

The parameter 6 € [0, 1] governs the extent of the externality. In a symmetric equilibrium
(x;(t) = X(t),d;(t) = D(t)¥i), the aggregate law of motion is:

D(t) - D(t — 1) = X(t) - (1 p)R(?)

F.4 Parameter Restrictions

We maintain the following assumptions throughout to ensure interior solutions and
well-defined optimization problems:

e Al (Interior Solutions): Parameters ensure positive extraction and consumption,
requiring that the marginal product of water exceeds its marginal cost at low extraction
levels.

e A2 (Well-defined Utility): Consumption remains positive: ¢;(t) = log(z;(t)) —
x;(t)d;(t) > 0 for optimal choices. This ensures CRRA utility u(c) is well-defined over
the domain of optimal consumption levels.

e A3 (Concave Optimization): The production function log(Ax + pR) is strictly
concave in x. This curvature dominates the linear cost function, ensuring strictly
concave objective functions and unique interior solutions to all optimization problems.

e A4 (Positive Extraction in Period 2): For all rain realizations, ﬁ > %R, ensuring
X(2; R) > 0. This assumption rules out corner solutions in period 2; relaxing it would
require analyzing boundary conditions for the optimization problem, which would not

qualitatively change our main results.

G Social Planner’s Problem

The planner chooses extraction {X (1), X(2; R)} to maximize total discounted expected
utility:

X(glg{}((m') W =u(C(1)) + BER[u(C(2; R))]

subject to the resource constraints, the law of motion of the depth to water, and aggregate
consumption:

C(1) = TogAX (1) + pRy) — X(1)D(1)
C(2; R) =1log(AX(2; R) + pR) — X(2; R)D(2)
D(2) = D(1) + X(1) — (1 — p)Ry

60



G.1 Planner’s First-Order Conditions
G.1.1 Period 2 FOC

For any rain realization R, the planner chooses X (2; R) taking D(2) as given. The FOC

1s:

ow

xR "
, 30(2, R)
2;
0C(2;R) A D) =0
0X(2;R)  MX(2;R) +pR
This yields the optimal period-2 extraction rule:
A B c ooy L pR
G.1.2 Period 1 Euler Equation
The planner chooses X (1), internalizing its effect on D(2):
ow 0
0X(1)
, oC(1) , 0C(2; R) 0D(2)
1 E 2; =
Computing each term:
oC(1) A
=———D(1
0X(1) =z(1) (1)
0C(2;R) '
oD(2) 1
0X(1)
Substituting and using (SP.FOC2) yields the Euler equation:
/\ UI(CSP<2;R))
—D(1) =PFEg | ———F—~= - Xsp(2; R
zsp(1) (1) =Bz u'(Csp(1)) se(& 8)
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H Decentralized Equilibrium (DE)

Each farmer ¢ chooses {z;(1), z;(2; R)} to maximize own utility, taking aggregate extraction
X(t) and the depth evolution as given:

max  u(c;(1)) + fEgr[u(ci(2; R))]

177;(1)7337;(2;')
subject to:

dz2)=d()+(1—9)xz()+9X(1) (1=p)k
log(Az;(1) + pRy) — x;(1)d;(1)
Ci(2a R) =log(Az;(2; R) + pR) — :(2; R)d;(2)

We focus on a symmetric equilibrium: z;(t) = X(¢),d;(t) = D(t).

H.1 Decentralized First-Order Conditions
H.1.1 Period 2 FOC

The farmer’s problem in period 2 is static. The FOC is identical to the planner’s:

A 1 pR
———-D(2)=0 = Xpg%R)=—— " DE.FOC2
zpe(2; R) (2)=0 pr(Z R) D(2) A ( c2)

H.1.2 Period 1 Euler Equation

The key difference emerges in period 1. The farmer’s FOC is:

0
Fo @y (e (1) + BB (2)] = 0

u'(c,(l))gz((?) + BER |u'(ci(2; R))aglcgi’;)%) giﬁ; =Y

Computing the terms, noting the different effect on d;(2):
1) A

dci(1) .

o)~ am %W
0 —z;(2; R)

0di(2)

dz;(1) =1-9
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Imposing symmetry and using (DE.FOC2) yields the decentralized Euler equation:

A D)= 81— w(Cpr(2 R))
2pe(1) D) =51 = O u'(Cpe(1))

- Xpe(2; R) (DE.Euler)

The only difference from (SP.Euler) is the multiplicative factor (1 — #) on the right-hand side.

I Propositions

I.1 Proposition 1: The Externality Wedge

For any 6 > 0, decentralized first-period extraction is greater than the social planner’s
first period extraction: X},5(1) > X¢p(1).

Proof. Define the function F(X (1)) = /\X(IS\W — D(1), which is the net marginal benefit of
period-1 extraction. Its derivative is:
dF N

X)X+ R

so F'is strictly decreasing in X (1).
The Euler equations define the optimal extraction levels:

P FOXG(1) = 08 | S 0) = 1
DE: F(Xp(1)) = (1 — 0)Er | S22 (2)| = T

We now show that I'sp, I'pg > 0. By Assumption A1, interior solutions exist, meaning

extraction is strictly positive in all periods. By (SP.FOC2) and (DE.FOC2), X(2; R) > 0 by

Assumption A4. The marginal utility ratio E 8; is strictly positive since u/(¢) =¢7 >0

for all ¢ > 0 (guaranteed by Assumption A2) Therefore, I'sp, 'pe > 0.
For 6 > 0, we have (1 —#) < 1, which implies:

u'(Csp(2))

Ipep=(1-10) BEr u'(Csp(1))

u'(Cpr(2)) XDE(2):| < BB, {

W (Cpge(1)) Xsp(2)| =Tse

Therefore, in equilibrium:
F(Xpp(1)) = Tpi < Dsp = F(X5p(1))
Since F' is strictly decreasing, this implies:
Xpp(l) > X5p(1)

which completes the proof. B O]
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I.2 Proposition 2: Ambiguous Effect of Technology

The sign of the change in the social planner’s optimal first-period extraction in response
. . . . . S dX5p(1)
to an increase in irrigation efficiency is ambiguous: —38— = 0.

Proof. We analyze the planner’s system of equations. The optimal choice X§p(1) is defined
implicitly by the Euler equation (SP.Euler). Define the function G such that the equilibrium
condition is G(X (1), \) = 0:

A u'(C(2; R))
X1),N)=(——-DQ1)) —PERr | ———= - X(2; =
GO = (g ~ D) | X ) =0
PO
By the Implicit Function Theorem:

aX() _ 5
oG
dA X (1)

The denominator, 8;9(—%), is the second-order condition of the maximization problem. By

Assumption A3, the objective is strictly concave, so % < 0 at an interior maximum. Thus,
the sign of d)é/(\l) is the sign of the numerator, g—f.
We compute g—f:
oG OF 0 (u(C(2))
— =— —FEp | == | ——% - X(2
o on  PEr [aA (u’(C(l)) 2)
The first term is the direct marginal benefit effect. Using the quotient rule:
OF 0 < A )  (AX(1) + pRy) —AX(1) pRy PRy 50
O ON\MX(1)+pR, /) (AX(1) + pRy)? C(AX(D) +pRy)2 T (2(1))2
. . e dx(1)
This effect encourages more extraction (a positive force on =5=).

The second term is complex and captures how the future marginal value changes with
technology. From (SP.FOC2), we have:

0X(2;R)  pR

o a0

Higher \ increases optimal period-2 extraction. This increases future consumption C'(2; R),
which affects marginal utilities through the CRRA specification. The term involves:

o (i ) =33 () )

e Income Effect: Higher A increases consumption in both periods through higher

This term includes:
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production from each unit of water, affecting marginal utilities.

e Future Extraction Effect: Higher A directly increases X (2; R), which increases
period-2 consumption but also period-2 costs (through higher X (2) - D(2)).

w(C(2)
w'(C(1))

e Intertemporal Substitution Effect: Changes in the marginal utility ratio
depend on how A affects consumption levels asymmetrically across periods.

The sign of this second term depends on parameter values, particularly:

e Risk aversion v: Higher v amplifies the effect of consumption changes on marginal
utility ratios.

e Discount factor g: Higher § increases the weight on future values.

e Initial depth D(1): Higher initial depth makes period-1 extraction more costly relative
to the marginal product gain from higher A.

e Rainfall distribution: Greater rainfall reduces the relative importance of irrigation
efficiency improvements.

Since the second term can be positive or negative depending on these parameters, and it

is subtracted in the expression for %, the net effect % is ambiguous. Therefore:
AX5p(1) -
d\
Empirical Note: Our results from low-externality areas suggest the precautionary savings
effect dominates in our setting, resulting in dei—f(l) <0. 1 [

I1.2.1 Sufficient Conditions for Conservation Response

While Proposition 2 establishes that the effect of technology on socially-optimal extraction
is ambiguous, we can characterize conditions under which technology improvements lead to

Xep@) 0). The following lemma provides sufficient conditions:

conservation (i.e., —3%

Lemma 1 (Sufficient Conditions for %ﬁm < 0). The social planner reduces period-1

extraction in response to improved irrigation efficiency if any of the following sufficient
conditions hold:

1. High Risk Awversion: v is sufficiently large
2. High Initial Depth: D(1) is sufficiently large relative to A
3. High Rainfall Variance: Var(R(2)) is sufficiently large

4. Strong Patience: (5 is sufficiently close to 1
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Proof. Recall from Proposition 2 that:

06 _ o o (0@
o~ Gop [m((cu)) X<2)>]
~——

>0

and %ﬁm < 0 if and only if g—f < 0, which requires the second term to dominate the first.

We analyze the second term. Define:

®(\) = Eg (Og(ﬁ))_ X(2;R)
Then:
o0 9, C(ZRN\ 7 o .
s[5 ((22) " xen)

Using the product rule:

C(2)\ " 9X(2)
* (0(1)) o\

0

O\

From (SP.FOC2), X(2; R) = =5 — 2% so:

DE A
0X(2;R)  pR
o el

For consumption, we have:

C(2; R) =log(AX(2; R) + pR) — X(2; R)D(2)

s () -1 22

Therefore:
0C(2; R) B 1 B pRD(2)
oA\ D) A2
And:
oC (1) B X(1)
ox (1)

The sign of g—f depends on the balance between:

-
e The direct effect: <%) a);gz) > 0 (more future extraction)

—y—1
e The marginal utility ratio effect: —v (%) 2 (%) X(2) (depends on how A
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affects the consumption ratio)

Condition 1 (High 7): As v — oo, the marginal utility ratio effect becomes arbitrarily
large relative to the direct effect. High risk aversion amplifies the importance of consumption
smoothing across states, making the planner more responsive to Changes in future consumption
Varlablhty induced by A. For sufficiently large v, the second term in 5+ domlnates yielding

A < 0.
Condition 2 (High D(1)): When initial depth is large, the marginal cost of period-1

extraction D(1) is high. This reduces the direct marginal benefit p(lfl)g (as z(1) is smaller

for a given A when extraction is limited). Simultaneously, a high D( ) increases the value of
conservation for reducing future depth D(2). For sufficiently large D(1), the future value
effect dominates.

Condition 3 (High Var(R(2))): Greater rainfall variance increases the precautionary
value of groundwater as a buffer stock. When A increases, it affects the distribution of C'(2; R)
across states. With high variance, the planner places greater weight on insuring against bad
states (low R). ThlS amplifies the second term in gf\;, incentivizing conservation. For large
enough variance, 2 a)\ < 0.

Condition 4 (High g): As § — 1, the planner weights future utility equally with
present utility. This increases the magnitude of the entire second term a,\ ® relative to the
first term (—W For 8 sufficiently close to 1, the future considerations dominate, yielding

% <0.m O

Interpretation: These conditions characterize settings where the planner’s response to
technology is dominated by the precautionary savings and intertemporal considerations
rather than immediate production gains. In contexts with high climate risk, deep aquifers,
risk-averse populations, or patient decision-makers, technological improvements may lead to
less extraction as the enhanced productivity increases the option value of conservation.

I.3 Proposition 3: Technology Amplifies the Wedge

There exists a threshold 8* € (0, 1) such that for all § > 6*, the wedge between decentralized
and efficient extraction increases with irrigation efficiency: 42 > 0.

Proof. Recall A(\,0) = X} p(1;6) — X5p(1). Define:

dXpp(l)  dXgp(l)  dA
d\ dx  d\

U(8,~, 5, Var(R))

The threshold #* is implicitly defined by:

(6", 7,8, Var(R)) =0

We analyze how W (0) varies with § by examining %ﬁfu) and %&’(1).
We next consider behavior at the boundaries. Notice that at 6 = 0, there is no exter-

nality, so the decentralized and social planner problems coincide: X},5(1;0 = 0) = X§p(1).
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Therefore: ax% (1) 2X20(1)
DE SP
N =——= = Y0
dA 6=0 d\ (0)
As 6 — 1, the factor (1 — 6) — 0 mutes the intertemporal term in the decentralized
farmer’s Euler equation. The farmer’s first-order condition approaches:

=0

A

FXWN = 55 om — P

)~ 0

Taking the derivative with respect to A using the Implicit Function Theorem yields:

dXs (1 or
lim DE( ) _ gg\w _ pRy <0
0—1 d\ ax (D) /\2

Meanwhile, the planner’s response %ﬁm is finite and ambiguous in sign (Proposition

2). Under the sufficient conditions of Lemma 1 (high risk aversion, high initial depth, high

rainfall variance, or strong patience), we have L(l) < 0. Therefore:

lim w(g) = 2F _ dXsp(l)

i Y\ = T o Y

We now show that L() is strictly increasing in 0, which implies W(6) is strictly
increasing in 6.
The decentralized equilibrium is defined by H (X (1), A

S
N—
I
o

H(X(1),),0) = F(X(1),\) — 8(1 — 0)Ep [M : X(Q)] =0

By the Implicit Function Theorem:

* o0H
dXpp(l) _ X
- oOH
dA ax (1)
The denominator 8)8(—[({) is negative (second-order condition from Assumption A3), so the

sign of u equals the sign of 24

We compute the derivative of

0 (0H 0 [(u(C(2))

— ——= - X(2 >0

35 () =7 [ (i <@
This derivative is positive because higher irrigation efficiency increases the marginal value
, %—if is strictly increasing in 6, which implies dXZf(l) is strictly
increasing in 6. Since %() is independent of 8, we conclude that ¥(6) is strictly increasing
in 6.

We now show the existence of uniqueness of the threshold #*. We have established that:

gf}

with respect to 6:

of future water. Therefore
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o U(0)=0
e limy,; U(A) > 0 (under the sufficient conditions)
e U(0) is strictly increasing in 6

By the Intermediate Value Theorem and strict monotonicity, there exists a unique
0* € (0,1) such that ¥(6*) = 0.
Furthermore, since W(#) is strictly increasing:

dA
KZ\D(Q)>O for all 6 > 6*

This completes the proof. l O

Note that, if the sufficient conditions of Lemma 1 do not hold and %ﬁm > 0, then
the existence of an interior threshold depends on the relative magnitudes of the planner
and decentralized responses. However, in the empirically relevant case where precautionary
motives dominate (as suggested by our low-externality area results), the conditions of Lemma

1 ensure 0* € (0,1) exists.

J Comparative Statics

J.1 Comparative Static 1: Wedge and Drought Probability

The wedge A is increasing in the probability of a low-rainfall shock (1 —p): 722~ > 0.

© 9(1-p)

Proof. Consider an increase in the probability of low rain, (1—p). Define V(R) = “;(,?éz(ﬁ))) X(2; R)
as the marginal value of period-1 conservation under rain realization R.
Step 1: Show that V(R.) > V(Rpy).
From (SP.FOC2) and (DE.FOC2), X(2; R) = p5; — &' Since Ry < Ry, we have:
X(2;Rp) > X(2; Ryy)

More extraction occurs in low-rainfall states.
For consumption, we have:

Taking the derivative with respect to R:

0C(2; R) B pD(2)
or ~ a0
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Therefore, C(2; Ry) < C(2; Ry), implying v/'(C(2; R1)) > u/(C(2; Ry)).

The marginal value of conservation is:

CW(CER) o L CERT . (CR)\ T
VR) = =y X(2; R) O X(2;R) <0(1)) X(2;R)

Since C(2; R;) < C(2; Ry) and X (2; Rr) > X(2; Ry), and v > 0, we have:

v = (CGi) x> (CET) xR = V()

Water is more valuable (in terms of marginal conservation benefit) in drought states.
Step 2: Analyze the effect on extraction.
The planner’s Euler equation is:

F(Xsp(1))=B[p-V(Ru)+ (1 —p)-V(RL)]

An increase in (1 — p) increases the right-hand side (RHS) since V(Ry) > V(Ry). Since F' is
decreasing in X (1), the planner responds by decreasing Xp(1).
The decentralized farmer’s Euler equation is:

F(Xpp(1)) = B(1=0)[p-V(Ry) + (1 —p)  V(RL)]

The same increase in (1 — p) increases the RHS, but it is scaled by (1 — ) < 1. Therefore,
the absolute increase in the RHS is smaller for the farmer than for the planner.
Let AV =V(R,) — V(Rg) > 0. Then:

0
——RHSgp = AV
o) e
0
RHSpr = B(1 — 0)AV AV
o(1—p) pe = B( ) <p
Since F is strictly decreasing with d;_[zl) = —% < 0, we can apply the implicit function
theorem:
dX(1) — ORHS/9(1—p) ORHS/O(1—p)
d(1—p) OF/0X (1) A2/z(1)2
Therefore:

dX5p(1) mv
'dX* Zi)' AQ/Z
‘ bl )) )\2/z
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Since both derivatives are negative and ‘df(’%f;)l )’ < ‘d;gf S) , we have:
dA dXpp dX%p -0
d1—p) d(l—p) d(1-p)
The wedge increases with drought probability. O]

J.2 Comparative Static 2: Wedge and Rainfall Variance

The wedge A is increasing with the variance of period-2 rainfall (under a mean-preserving
spread): avz—f(R) > 0.

Proof. A mean-preserving spread (MPS) increases variance while holding average rainfall
constant: pRy + (1 — p)R; = R remains fixed. An MPS can be implemented by increasing
Ry and decreasing Ry (moving the realizations further from the mean) while adjusting p to
maintain the mean.

Step 1: Effect of MPS on precautionary motive.

For a risk-averse agent with CRRA utility (v > 0), consumption exhibits prudence: the
third derivative u’(¢) > 0. This creates a precautionary savings motive. When facing
increased variance in future consumption (due to rainfall variance), the agent conserves more
in period 1.

Under an MPS that increases Var(R), the distribution of C'(2; R) becomes more dispersed.
By the precautionary savings motive, the planner responds by extracting less in period 1 to
build a larger buffer stock D(2) to insure against worse drought realizations.

Thus, an MPS causes:

Xip() _,
dVar(R)

Step 2: Differential response due to externality.

The decentralized farmer is also risk-averse but faces a muted incentive due to the
factor (1 — #) multiplying the entire expected future value term in the Euler equation. The
precautionary motive is present but attenuated by (1 — ).

Specifically, the second-order effect of increased variance on expected marginal utility
is scaled by (1 — @) in the decentralized problem. Therefore, the farmer’s precautionary
response—the decrease in X7, ;(1)—is weaker than the planner’s.

To see this formally, consider the expected marginal value terms:

SP: BER[V(R)]
DE: B(1 - 0)ER[V (R)]

Under an MPS, Ex[V(R)] increases (by Jensen’s inequality applied to the convex marginal
value function). However, the decentralized agent’s response is proportional to (1 — 6) -

Er[V(R)], which increases by less.
Therefore:

dXpp(D)| _ [dX5p(1)
| < i)
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Step 3: Effect on wedge.
Since both derivatives are negative and the magnitude of the planner’s response exceeds
the farmer’s:

dA dXpp  dXGp -0
dVar(R)  dVar(R) dVar(R)
The wedge widens with increased rainfall variance. O]
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